Fractional topology from entanglement

 Joel Hutchinson, Karyn Le HurarXiv:2002.11823

Outline

Motivation

Ising entanglement model

Generalized spin models

Lattice model

Motivation

- Simple example of topology: spin-1/2 in radial magnetic field.
$\vec{H}=H(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$
$\left|\psi_{-}\right\rangle=\binom{\cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}}\left|\psi_{+}\right\rangle=\binom{\sin \frac{\theta}{2}}{-e^{i \phi} \cos \frac{\theta}{2}}$
ground state

Motivation

- Simple example of topology: spin- $1 / 2$ in radial magnetic field.
$\vec{H}=H(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$
$\left|\psi_{-}\right\rangle=\binom{\cos \frac{\theta}{2}}{e^{i \phi} \sin \frac{\theta}{2}}\left|\psi_{+}\right\rangle=\binom{\sin \frac{\theta}{2}}{-e^{i \phi} \cos \frac{\theta}{2}}$

- Berry connection: $\mathcal{A}_{\alpha}=i\langle\psi| \partial_{\alpha}|\psi\rangle$
- Berry curvature: $\mathcal{F}_{\phi \theta}=\partial_{\phi} \mathcal{A}_{\theta}-\partial_{\theta} \mathcal{A}_{\phi}=\frac{\sin \theta}{2}$
- Chern number:

$$
\begin{aligned}
\mathcal{C} & =\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \mathcal{F}_{\phi \theta} \\
& =1
\end{aligned}
$$

Motivation

- One can measure topology from time-evolution of qubits from North to South poles.

$$
\begin{aligned}
\mathcal{C} & \equiv \frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \mathcal{F}_{\phi \theta} \\
& =\frac{1}{2}\left(\left\langle\sigma_{z}(\theta=0)\right\rangle-\left\langle\sigma_{z}(\theta=\pi)\right\rangle\right)
\end{aligned}
$$

L. Henriet, A. Sclocchi, P. P. Orth, and K. Le Hur, Phys. Rev. B 95, 054307 (2017).

- Works for Two qubits as well.

LETTER

Observation of topological transitions in interacting quantum circuits
P. Roushan ${ }^{1}{ }^{*} *$, C. Neill ${ }^{1}{ }^{*}$, Yu Chen ${ }^{1}{ }^{+} *$, M. Kolodrubetz ${ }^{2}$, C. Quintana ${ }^{1}$, N. Leung ${ }^{1}$, M. Fang ${ }^{1}$, R. Barends ${ }^{1}+$, B. Campbell ${ }^{1}$, Z. Chen ${ }^{1}$

Motivation

- Total Chern number 0,1,2 measured experimentally.
- Can be interpreted as number of degeneracy monopoles contained in parameter sphere.

LETTER

doi:10.1038/nature13891
Observation of topological transitions in interacting quantum circuits
P. Roushan ${ }^{1}{ }^{+}{ }^{*}$, C. Neill ${ }^{1}$, Yu Chen $^{1} \dagger^{*}$, M. Kolodrubetz ${ }^{2}$, C. Quintana ${ }^{1}$, N. Leung ${ }^{1}$, M. Fang ${ }^{1}$, R. Barends ${ }^{1} \dagger$, B. Campbell ${ }^{1}$, Z. Chen B. Chiaro ${ }^{1}$, A. Dunsworth ${ }^{1}$, E. Jeffrey ${ }^{1} \dagger$, J. Kelly ${ }^{1}$, A. Megrant ${ }^{1}$, J. Mutus ${ }^{1} \dagger$, P. J. J. O'Malley ${ }^{1}$, D. Sank ${ }^{1} \dagger$, A. Vainsencher ${ }^{1}$, J. Wenner T. White ${ }^{1}$, A. Polkovnikov ${ }^{2}$, A. N. Cleland ${ }^{1}$ \& J. M. Martinis ${ }^{1}$

Motivation

- Does there exist a Chern number for each spin?

Yes!

- well-defined.
- gauge invariant.
- robust to symmetrypreserving deformations.

$$
\mathcal{A}_{\alpha}=i\langle\psi| \partial_{\alpha}|\psi\rangle \longrightarrow \mathcal{A}_{\alpha}^{j} \equiv i\langle\psi| \partial_{\alpha}^{j}|\psi\rangle
$$

$$
\mathcal{C}^{j}=-\frac{1}{2 \pi} \int_{0}^{2 \pi} d \phi \int_{0}^{\pi} d \theta \partial_{\theta}^{j} \mathcal{A}_{\phi}^{j}
$$

$$
=\frac{1}{2}\left(\left\langle\sigma_{z}^{j}(\theta=0)\right\rangle-\left\langle\sigma_{z}^{j}(\theta=\pi)\right\rangle\right)
$$

Outline

Ising entanglement model

Generalized spin models

Ising Entanglement Model

$$
\mathcal{H}^{ \pm}=-\left(\frac{\boldsymbol{H}_{1}}{\square} \cdot \boldsymbol{\sigma}^{1} \pm \underline{\boldsymbol{H}_{2}} \cdot \boldsymbol{\sigma}^{2}\right) \pm \underline{\tilde{r} f(\theta) \sigma_{z}^{1} \sigma_{z}^{2}}
$$

Radial magnetic fields $\vec{H}=(H \sin \theta \cos \phi, H \sin \theta \sin \phi, \cos \theta+M)^{T}$

(can also be obtained with interaction that increases with angle)

Ising Entanglement Model

- Time-dependent sweep protocol
$\theta=v t$
$\phi=$ const $M_{1}=\frac{H}{3} \quad M_{2}=\frac{H}{2}$

Ising Entanglement Model

- Time-dependent sweep protocol

$$
\begin{aligned}
& \theta=v t \\
& \phi=\text { const }
\end{aligned} \quad M_{1}=\frac{H}{3} \quad M_{2}=\frac{H}{2}
$$

$$
M_{1}=M_{2}=\frac{3 H}{4}
$$

Ising Entanglement Model

- Access partial Chern numbers from poles

Ising Entanglement Model

- Access partial Chern numbers from poles

- Landau-Zener diabatic transitions

Adiabaticity: $\gamma=\frac{\Delta^{2}}{\sqrt{2} H v} \quad \mathcal{C}^{j} \approx \frac{3}{4}+\frac{\pi}{4} \operatorname{Re}\left(e^{i 3 \pi / 4} e^{-\gamma \pi / 4} \frac{\operatorname{sgn}(\Delta) \sqrt{\gamma}}{\Gamma(1 / 2+i \gamma / 4) \Gamma(1-i \gamma / 4)}\right)$

Ising Entanglement Model

- Access partial Chern numbers from poles

|sing Entanglement Model

$$
\mathcal{H}^{ \pm}=-\left(\boldsymbol{H}_{1} \cdot \boldsymbol{\sigma}^{1} \pm \boldsymbol{H}_{2} \cdot \boldsymbol{\sigma}^{2}\right) \pm \tilde{r} f(\theta) \sigma_{z}^{1} \sigma_{z}^{2}
$$

Outline

Ising entanglement model

Generalized Interactions

$$
\mathcal{H}=-\boldsymbol{H}_{1} \cdot \boldsymbol{\sigma}_{1}-\boldsymbol{H}_{2} \cdot \boldsymbol{\sigma}_{2}+r_{z} \sigma_{1}^{z} \sigma_{2}^{z}+r_{x y}\left(\sigma_{1}^{x} \sigma_{2}^{x}+\sigma_{1}^{y} \sigma_{2}^{y}\right)
$$

theta-dependent coupling

$$
\begin{aligned}
r_{z} & \rightarrow r_{z} \sin (\theta-\pi / 2) \\
r_{x y} & \rightarrow r_{x y} \sin (\theta-\pi / 2)
\end{aligned}
$$

Generalized Interactions

$$
\mathcal{H}=-\boldsymbol{H}_{1} \cdot \boldsymbol{\sigma}_{1}-\boldsymbol{H}_{2} \cdot \boldsymbol{\sigma}_{2}+r_{z} \sigma_{1}^{z} \sigma_{2}^{z}+r_{x y}\left(\sigma_{1}^{x} \sigma_{2}^{x}+\sigma_{1}^{y} \sigma_{2}^{y}\right)
$$

c.f.

$$
\mathcal{H}_{2 Q}=-\frac{\hbar}{2}\left[H_{0} \sigma_{1}^{z}+\mathbf{H}_{\mathbf{1}} \cdot \boldsymbol{\sigma}_{\mathbf{1}}+\mathbf{H}_{\mathbf{2}} \cdot \boldsymbol{\sigma}_{\mathbf{2}}-g\left(\sigma_{1}^{x} \sigma_{2}^{x}+\sigma_{1}^{y} \sigma_{2}^{y}\right)\right]
$$

LETTER
Observation of topological transitions in interacting quantum circuits

Higher Spins

- Check with 2nd-order perturbation theory to find g.s. at south pole:
(a)

$\mathcal{C}^{j}=\{1,0,0,1\}$
(b)

$\mathcal{C}^{j}=1 / 2$
(c)

$\mathcal{C}^{j}=2 / 3$

Higher Spins

- Models that admit fractional invariants:
- 2-spin Ising coupled 1/2
- 2-spin XY coupled 1/2
- 2-spin Heisenberg X
- 2-spin anisotropic Heisenberg 1/2
- Inversion symmetric
- 4-spin ZXZ box X
- 4-spin ZXZX box
- Even-N Ising chain
- Odd-N Ising chain

Outline

Ising entanglement model

Generalized spin models

Lattice model

Lattice Model

- Mapping between 2 qubits and bilayer:

Hexagonal lattice

1st BZ	S^{2}
$\mathrm{~K}, \mathrm{~K}$,	N, S

Haldane hopping elements
Bilayer (2 flavours)

$$
\mathcal{C}
$$

$$
n_{\mathbf{k} A}-n_{\mathbf{k} B}
$$

Semenoff mass
density-density interaction

Spheres

Radial magnetic field
2 spins

$$
\begin{gathered}
\frac{1}{2}\left(\left\langle\sigma^{z}(\theta=0)-\sigma^{z}(\theta=\pi)\right)\right. \\
\sigma^{z}
\end{gathered}
$$

Offset magnetic field Ising interaction

Lattice Model

- Mapping between 2 qubits and bilayer:

$$
\begin{gathered}
\text { Hexagonal lattice } \\
\mathcal{H}(\boldsymbol{k})=\left(\begin{array}{cc}
\left(\boldsymbol{d}+M_{1} \hat{z}\right) \cdot \boldsymbol{\sigma} & r \mathbb{I} \\
r \mathbb{I} & \left(\boldsymbol{d}+M_{2} \hat{z}\right) \cdot \boldsymbol{\sigma}
\end{array}\right) \\
\uparrow
\end{gathered}
$$

interlayer hopping (in perturbation theory)

Lattice Model

- Compute the total Chern number:

Hexagonal lattice
Spheres

Lattice Model

- Is the fractional invariant observable in a lattice model?

- Nodal ring semimetal

Lattice Model

- Is the fractional invariant observable in a lattice model?

- Nodal ring semimetal
- Circular light transitions forbidden at K^{\prime}

$$
\mathcal{C} \sim \frac{1}{2} \int_{0}^{\infty} d \omega \sum_{\boldsymbol{k}=K, K^{\prime}}\left(\Gamma_{l}^{+}(\omega, \boldsymbol{k})-\Gamma_{l}^{-}(\omega, \boldsymbol{k})\right)
$$

[^0] arXiv:2002.1742 (2020).

Lattice Model

- Is the fractional invariant observable in a lattice model?

Lattice Model

- Is the fractional invariant observable in a lattice model?

Lattice Model

- Mapping between 2 qubits and bilayer:

Hexagonal lattice

$$
\begin{array}{l|c}
\hline \text { 1st BZ } & \mathrm{S}^{2} \\
\hline \mathrm{~K}, \mathrm{~K}^{\prime} & \mathrm{N}, \mathrm{~S}
\end{array}
$$

Haldane hopping elements
Bilayer (2 flavours)
$\mathcal{C} \quad \frac{1}{2}$

$$
n_{\mathbf{k} A}-n_{\mathbf{k} B}
$$

Semenoff mass
density-density interaction

Spheres

1 st BZ	S^{2}
$\mathrm{~K}, \mathrm{~K}^{\prime}$	N, S
Haldane hopping elements	Radial magnetic field
Bilayer $(2$ flavours $)$	2 spins
\mathcal{C}	$\frac{1}{2}\left(\left\langle\sigma^{z}(\theta=0)-\sigma^{z}(\theta=\pi)\right)\right.$
$n_{\mathbf{k} A}-n_{\mathbf{k} B}$	σ^{z}
Semenoff mass	Offset magnetic field
density-density interaction	Ising interaction

Lattice Model

- Is the fractional invariant observable in a lattice model?

$$
\begin{aligned}
\tilde{\mathcal{C}}^{j} & =\frac{1}{2}\left\langle n_{K B}^{j}-n_{K A}^{j}-n_{K^{\prime} B}^{j}+n_{K^{\prime} A}^{j}\right\rangle \\
& = \begin{cases}1 & r<r_{c}^{-} \\
1 / 2 & r_{c}^{-}<r<r_{c}^{+} \\
0 & r>r_{c}^{+}\end{cases}
\end{aligned}
$$

Lattice Model

- Edge states in ribbon geometry

Lattice Model

- Edge states in ribbon geometry

Conclusions

- There is a gauge invariant topological partial Chern number for each spin in interacting models with a radial magnetic field.
- This is rational-valued for models that yield entanglement at one pole.
- Spin models are topologically dual to fermion models on a hexagonal lattice, observable via: sublattice magnetization, entanglement entropy, circler dichroism, edge states.

QMC questions

- Does the nodal ring semimetal survive interactions?

Thanks for your attention!

Charge-Density-Wave Transitions of Dirac Fermions Coupled to Phonons
Chuang Chen, ${ }^{1,2}$ Xiao Yan Xu, ${ }^{3}$ Zi Yang Meng, ${ }^{1,4,5}$ and Martin Hohenadler ${ }^{6}$

$$
\begin{gathered}
\text { ALF: Color symmetry } \\
\hat{H}_{\lambda}=-\lambda \sum_{0}\left(\sum_{\langle i, j\rangle\rangle \in \in}{ }^{\left.\mathrm{i} \nu_{i j} \hat{c}_{i}^{\dagger} \hat{\sigma}_{j}+\text { H.c. }\right)^{2}}\right.
\end{gathered}
$$

$$
\begin{gathered}
\text { Semenoff masS } \\
\hat{H}=-t \sum_{\langle i j\rangle \sigma} \hat{c}_{i \sigma}^{\dagger} \hat{c}_{j \sigma}+\sum_{i}\left(\frac{1}{2 M} \hat{P}_{i}^{2}+\frac{\kappa}{2} \hat{Q}_{i}^{2}\right)-g \sum_{i} \hat{Q}_{i} \hat{\rho}_{i} \\
\text { PHYSICAL REVIEW LETTERS 122, } 077601 \text { (2019) }
\end{gathered}
$$

ARTICLE
https://doi.org/10.1038/s41467-019-10372-0 OPEN
Superconductivity from the condensation of topological defects in a quantum spin-Hall insulator
Yuhai Liu ${ }^{1}$, Zhenjiu Wang ${ }^{2}$, Toshihiro Sato ${ }^{2}$, Martin Hohenadler ${ }^{2}$, Chong Wang ${ }^{3}$, Wenan Guo $0^{1,4}$ \& Fakher F. Assaad ${ }^{2}$

[^0]: P. Klein, A. Grushin, and K. Le Hur, arXiv e-prints

