Fractional topology from entanglement

Joel Hutchinson, Karyn Le Hur

arXiv:2002.11823

ECHNIQUE

PARIS

Outline

Motivation

Ising entanglement model

Generalized spin models

Lattice model

• Simple example of topology: spin-1/2 in radial magnetic field.

$$\vec{H} = H(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

$$|\psi_{-}\rangle = \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \end{pmatrix} \ |\psi_{+}\rangle = \begin{pmatrix} \sin\frac{\theta}{2} \\ -e^{i\phi}\cos\frac{\theta}{2} \end{pmatrix}$$

ground state

Simple example of topology: spin-1/2 in radial magnetic field.

$$\vec{H} = H(\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$$

$$|\psi_{-}\rangle = \begin{pmatrix} \cos\frac{\theta}{2} \\ e^{i\phi}\sin\frac{\theta}{2} \end{pmatrix} |\psi_{+}\rangle = \begin{pmatrix} \sin\frac{\theta}{2} \\ -e^{i\phi}\cos\frac{\theta}{2} \end{pmatrix}$$

ground state

- Berry curvature: $\mathcal{F}_{\phi\theta} = \partial_{\phi}\mathcal{A}_{\theta} \partial_{\theta}\mathcal{A}_{\phi} = \frac{\sin\theta}{2}$ Chern number: $\mathcal{C} = \frac{1}{2\pi} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \mathcal{F}_{\phi\theta}$

4

= 1

 One can measure topology from time-evolution of <u>qubits</u> from North to South poles.

$$\mathcal{C} \equiv \frac{1}{2\pi} \int_0^{2\pi} d\phi \int_0^{\pi} d\theta \mathcal{F}_{\phi\theta}$$
$$= \frac{1}{2} \bigg(\langle \sigma_z(\theta = 0) \rangle - \langle \sigma_z(\theta = \pi) \rangle \bigg)$$

L. Henriet, A. Sclocchi, P. P. Orth, and K. Le Hur, Phys. Rev. B **95**, 054307 (2017).

• Works for Two qubits as well.

Observation of topological transitions in interacting quantum circuits

doi:10.1038/nature13891

P. Roushan¹†*, C. Neill¹*, Yu Chen¹†*, M. Kolodrubetz², C. Quintana¹, N. Leung¹, M. Fang¹, R. Barends¹†, B. Campbell¹, Z. Chen¹, B. Chiaro¹, A. Dunsworth¹, E. Jeffrey¹†, J. Kelly¹, A. Megrant¹, J. Mutus¹†, P. J. J. O'Malley¹, D. Sank¹†, A. Vainsencher¹, J. Wenner¹, T. White¹, A. Polkovnikov², A. N. Cleland¹ & J. M. Martinis^{1,3}

• Total Chern number 0,1,2 measured experimentally.

 Can be interpreted as number of degeneracy monopoles contained in parameter sphere.

Observation of topological transitions in interacting quantum circuits

P. Roushan¹†*, C. Neill¹*, Yu Chen¹†*, M. Kolodrubetz², C. Quintana¹, N. Leung¹, M. Fang¹, R. Barends¹†, B. Campbell¹, Z. Chen¹, B. Chiaro¹, A. Dunsworth¹, E. Jeffrey¹†, J. Kelly¹, A. Megrant¹, J. Mutus¹†, P. J. J. O'Malley¹, D. Sank¹†, A. Vainsencher¹, J. Wenner¹, T. White¹, A. Polkovnikov², A. N. Cleland¹ & J. M. Martinis^{1,3}

• Does there exist a Chern number for each spin?

Yes!

- well-defined.
- gauge invariant.
- robust to symmetrypreserving deformations.

$$\mathcal{A}_{\alpha} = i \langle \psi | \partial_{\alpha} | \psi \rangle \longrightarrow \mathcal{A}_{\alpha}^{j} \equiv i \langle \psi | \partial_{\alpha}^{j} | \psi \rangle$$
$$\mathcal{C}^{j} = -\frac{1}{2\pi} \int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \partial_{\theta}^{j} \mathcal{A}_{\phi}^{j}$$
$$= \frac{1}{2} \Big(\langle \sigma_{z}^{j}(\theta = 0) \rangle - \langle \sigma_{z}^{j}(\theta = \pi) \rangle \Big)$$

Outline

Motivation

Ising entanglement model

Generalized spin models

_attice model

$$\mathcal{H}^{\pm} = -(\underbrace{\boldsymbol{H}_{1}}_{\downarrow} \cdot \boldsymbol{\sigma}^{1} \pm \underbrace{\boldsymbol{H}_{2}}_{\downarrow} \cdot \boldsymbol{\sigma}^{2}) \pm \tilde{r} f(\theta) \sigma_{z}^{1} \sigma_{z}^{2}$$
Radial magnetic fields (angle-dependent) Ising interaction

 $\vec{H} = (H\sin\theta\cos\phi, H\sin\theta\sin\phi, \cos\theta + M)^T$

0.0

0.6

9

• Time-dependent sweep protocol

$$\begin{array}{ll} \theta = vt \\ \phi = \mathrm{const} \end{array} \quad M_1 = \frac{H}{3} \quad M_2 = \frac{H}{2} \end{array}$$

• Time-dependent sweep protocol

$$\begin{array}{ll} \theta = vt \\ \phi = \mathrm{const} \end{array} \quad M_1 = \frac{H}{3} \quad M_2 = \frac{H}{2} \end{array}$$

• Access partial Chern numbers from poles

• Access partial Chern numbers from poles

Adiabaticity: $\gamma = \frac{\Delta^2}{\sqrt{2}Hv}$ $\mathcal{C}^j \approx \frac{3}{4} + \frac{\pi}{4} \operatorname{Re} \left(e^{i3\pi/4} e^{-\gamma\pi/4} \frac{\operatorname{sgn}(\Delta)\sqrt{\gamma}}{\Gamma(1/2 + i\gamma/4)\Gamma(1 - i\gamma/4)} \right)$

• Access partial Chern numbers from poles

$$\mathcal{H}^{\pm} = -(\boldsymbol{H}_1 \cdot \boldsymbol{\sigma}^1 \pm \boldsymbol{H}_2 \cdot \boldsymbol{\sigma}^2) \pm \tilde{r} f(\theta) \sigma_z^1 \sigma_z^2$$

Outline

Motivation

Ising entanglement model

Generalized spin models

_attice model

$$\mathcal{G}eneralized Interactions$$

$$\mathcal{H} = -H_1 \cdot \sigma_1 - H_2 \cdot \sigma_2 + r_z \sigma_1^z \sigma_2^z + r_{xy} (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y)$$

$$\int_{0}^{r_{xy}/H} \int_{0}^{r_{xy}/H} \int_{0}^$$

Generalized Interactions

$$\mathcal{H} = -\boldsymbol{H}_1 \cdot \boldsymbol{\sigma}_1 - \boldsymbol{H}_2 \cdot \boldsymbol{\sigma}_2 + r_z \sigma_1^z \sigma_2^z + r_{xy} (\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y)$$

c.f.

$$\mathcal{H}_{2Q} = -\frac{\hbar}{2} [H_0 \sigma_1^z + \mathbf{H_1} \cdot \boldsymbol{\sigma_1} + \mathbf{H_2} \cdot \boldsymbol{\sigma_2} - g(\sigma_1^x \sigma_2^x + \sigma_1^y \sigma_2^y)]$$

Higher Spins

• Check with 2nd-order perturbation theory to find g.s. at south pole:

$$\mathcal{H}_{\text{eff}} = P\mathcal{H}'P + P\mathcal{H}'\frac{1-P}{E_D - H_0}\mathcal{H}'P$$

Higher Spins

- Models that admit fractional invariants:
 - 2-spin Ising coupled 1/2
 - 2-spin XY coupled 1/2
 - 2-spin Heisenberg X
 - 2-spin anisotropic Heisenberg 1/2
 - Inversion symmetric X
 - 4-spin ZXZ box X
 - 4-spin ZXZX box 1/2
 - Even-N Ising chain
 - Odd-N Ising chain (N+1)/2N

1/2

Outline

Motivation

Ising entanglement model

Generalized spin models

• Mapping between 2 qubits and bilayer:

Hexagonal lattice	<u>Spheres</u>
1st BZ	\mathbf{S}^2
Κ, Κ'	N, S
Haldane hopping elements	Radial magnetic field
Bilayer (2 flavours)	2 spins
${\mathcal C}$	$\frac{1}{2}(\langle \sigma^z(\theta=0) - \sigma^z(\theta=\pi))$
$n_{\mathbf{k}A} - n_{\mathbf{k}B}$	σ^{z}
Semenoff mass	Offset magnetic field
density-density interaction	Ising interaction

• Mapping between 2 qubits and bilayer:

ice Model

Spheres

ice Model

- Nodal ring semimetal
- Circular light transitions forbidden at K'

$$\mathcal{C} \sim \frac{1}{2} \int_0^\infty d\omega \sum_{\boldsymbol{k}=K,K'} \left(\Gamma_l^+(\omega, \boldsymbol{k}) - \Gamma_l^-(\omega, \boldsymbol{k}) \right)$$

P. Klein, A. Grushin, and K. Le Hur, arXiv e-prints , arXiv:2002.1742 (2020).

D. T. Tran, A. Dauphin, A. G. Grushin, P. Zoller, and G. N., Sciences Advances **3**, e1701207 (2017).

• Is the fractional invariant observable in a lattice model?

• Mapping between 2 qubits and bilayer:

Hexagonal lattice	<u>Spheres</u>
1st BZ	\mathbf{S}^2
Κ, Κ'	N, S
Haldane hopping elements	Radial magnetic field
Bilayer (2 flavours)	2 spins
${\mathcal C}$	$\frac{1}{2}(\langle \sigma^z(\theta=0) - \sigma^z(\theta=\pi))$
$n_{\mathbf{k}A} - n_{\mathbf{k}B}$	σ^{z}
Semenoff mass	Offset magnetic field
density-density interaction	Ising interaction

ice Model

/2

 $\tilde{\mathcal{C}}^j = \frac{1}{2} \langle n^j_{KB} - n^j_{KA} - n^j_{K'B} + n^j_{K'A} \rangle$ $= \begin{cases} 1 & r < r_c^- \\ 1/2 & r_c^- < r < r_c^+ \\ 0 & r > r_c^+, \end{cases}$

• Edge states in ribbon geometry

• Edge states in ribbon geometry

Conclusions

- There is a gauge invariant topological partial Chern number for each spin in interacting models with a radial magnetic field.
- This is rational-valued for models that yield entanglement at one pole.
- Spin models are topologically dual to fermion models on a hexagonal lattice, observable via: sublattice magnetization, entanglement entropy, circler dichroism, edge states.

QMC questions

Does the nodal ring semimetal survive interactions?

Thanks for your attention!

Yuhai Liu¹, Zhenjiu Wang², Toshihiro Sato², Martin Hohenadler², Chong Wang³, Wenan Guo ^{1,4} & Fakher F. Assaad²