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Topology, with its abstract mathematical constructs, often mani-
fests itself in physics and has a pivotal role in our understanding of
natural phenomena. Notably, the discovery of topological phases in
condensed-matter systems has changed the modern conception of
phases ofmatter1–5. The global nature of topological ordering, how-
ever, makes direct experimental probing an outstanding challenge.
Present experimental tools are mainly indirect and, as a result, are
inadequate for studying the topology of physical systems at a funda-
mental level.Herewe employ the exquisite control affordedby state-
of-the-art superconductingquantumcircuits to investigate topological
properties of various quantumsystems.The essence of our approach
is to infer geometric curvature bymeasuring the deflection of quan-
tum trajectories in the curved space of the Hamiltonian6. Topolog-
ical properties are then revealed by integrating the curvature over
closed surfaces, a quantumanalogue of theGauss–Bonnet theorem.
Webenchmark our technique by investigating basic topological con-
ceptsof thehistorically importantHaldanemodel7 aftermapping the
momentumspace of this condensed-mattermodel to the parameter
space of a single-qubitHamiltonian. In addition to constructing the
topological phase diagram, we are able to visualize the microscopic
spin textureof the associated states and their evolutionacross a topo-
logical phase transition. Going beyond non-interacting systems, we
demonstrate the power of our method by studying topology in an
interactingquantumsystem.This required anewqubit architecture8,9

that allows for simultaneous control over every term in a two-qubit
Hamiltonian.By exploring theparameter space of thisHamiltonian,
wediscover theemergenceofan interaction-induced topologicalphase.
Our work establishes a powerful, generalizable experimental plat-
form to study topological phenomena in quantum systems.
Since the first observationsof topological ordering inquantumHall sys-

tems in the1980s1,2, experimental studiesof topologicalphaseshavemainly
been performed with a limited number of primarily indirect measure-
ment techniques. For instance, transportmeasurements are thepredom-
inant tool used to study thequantumHall effect,where interpretations10

are required to infer topological properties fromthemeasurements.Con-
sequently, topological studies in quantum systems where transportmea-
surements cannot be carried out have remained elusive.
In principle, topological properties can be explored in any quantum

systemwhere theHamiltonian canbewritten in termsof a set of param-
eters. Topological phases are characterizedby topological invariants, such
as the first ChernnumberCh, whosediscrete jumps indicate transitions
betweendifferent topologicallyorderedphases11,12. Foraquantumsystem,
Ch is defined as the integral over a closedmanifold S in the parameter
space of the Hamiltonian as

Ch: 1
2p

þ

S
B:dS ð1Þ

where B is the vector form of the Berry curvature13. As illustrated in
Fig. 1 and shown in Supplementary Information,B can be viewed as an

effective magnetic field with points of ground-state degeneracy acting
as its sources, that is, magnetic monopoles14. Using Gauss’s law for the
Berry curvature (magnetic field),Ch simply counts thenumberof degen-
erate energy eigenvalues (magnetic monopoles) enclosed by the para-
meter manifold S. Ch, which is invariant under perturbations to the
shape ofS, is a topological number that reflects a property of theman-
ifold of states as a whole and not a local property of parameter space.
In previous works, topological properties of highly symmetric quan-

tumsystemshavebeenmeasured15–17.However, since these earlier studies
relied on interference, these methods are not readily generalizable. To
circumvent this, Gritsev et al.6 proposed a general method to directly
measure the local Berry curvature. The underlying physics of their idea
is thatmotion in a curved space will be deflected from a straight trajec-
tory; in other words, curvature reveals itself as an effective force, anal-
ogous to a charged particlemoving in amagnetic field experiencing the
well-knownLorentz force. Similarly,Gritsev et al. showed that in a region
of the parameter space with Berry curvatureB, if we ‘move’ a quantum
system by changing a parameter of its Hamiltonian with rate jvj, then
the state of the system feels a force F given by

F!v|BzO v2
" #

, ð2Þ
whereO indicates higher-order terms. This force leads to deviations of
the trajectory from the adiabatic path, which can be detected through
measurements of the observables of the system (Fig. 1). As long as the
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Figure 1 | Dynamical measurement of Berry curvature and Ch. In this
schematic drawing, brown arrows represent the ground states (adiabatic limit)
for given points on a closed manifold S (green enclosure, interrupted by an
opening for the sake of illustration) in the Hamiltonian’s parameter space, and
the blue arrows are the measured states during a non-adiabatic passage.
According to equation (2) in the main text, the Berry curvature B can be
calculated from the deflection from adiabaticity. Integrating B over S gives the
ChernnumberCh, which corresponds to the total number of degeneracy points
(such as the brown point) enclosed.
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• Total Chern number 0,1,2 
measured experimentally.

• Can be interpreted as 
number of degeneracy 
monopoles contained in 
parameter sphere.
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In fact, the model we consider affords the more relaxed
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so that @j
�
A

j

✓
= 0 and will not contribute to the integral

over the Berry curvature.
The subsystem Chern number C

j can be determined
from Aj . In the standard representation of a single spin
eigenstate in a radial magnetic field, the ground state is
| "i at the north pole, and e

i�
| #i at the south pole. We

will take these states to form our single-spin basis:

|�+(�)i = | "i, |��(�)i = e
i�
| #i. (9)

It is important to note that while there are many ways
to represent the single-spin states |��(�)i and |�+(�)i,
their relative phase e

i� is fixed by the form of the Hamil-
tonian. The Berry connection is then expressed in terms
of the coefficients ckl(✓)

A
1
�
= �|c�+(✓)|

2
� |c��(✓)|

2 (10)
A

2
�
= �|c+�(✓)|

2
� |c��(✓)|

2
. (11)

Note that product states such as | "i1| "i2 or | #i1| #i2

will contribute 0 or 1 to the Berry connection, while an
entangled state such as 1p

2
(| "i1| #i2 + | #i1| "i2) will

contribute 1/2. The Chern number for the jth spin is
then

C
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So that we have the general result

C
1 = |c�+(⇡)|

2 + |c��(⇡)|
2
� |c�+(0)|

2
� |c��(0)|

2

C
2 = |c+�(⇡)|
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2
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2
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(13)

This leads to an intriguing case. Suppose we prepare a
system whose ground state evolves from a product state
at the ✓ = 0 to an entangled state at the ✓ = ⇡:

| "i1| "i2 !
1
p
2
(| "i1| #i2 + | #i1| "i2). (14)

Then the non-zero coefficients are |c++(0)|2 = 1,
|c+�(⇡)|2 = |c�+(⇡)|2 = 1

2 , for which

C
1 = C

2 =
1

2
. (15)

The presence of entanglement at one pole leads to a frac-
tional Chern number for each spin. Eq. (13) also leads

to the generalization of Eq. (2), since from the normal-
ization we have,

h�
1
z
(✓)i = 1� 2(|c�+(✓)|

2 + |c��(✓)|
2)

h�
2
z
(✓)i = 1� 2(|c+�(✓)|

2 + |c��(✓)|
2),

(16)

so that

C
j =

1

2

✓
h�

j

z
(✓ = 0)i � h�

j

z
(✓ = ⇡)i

◆
. (17)

In the case where the two spins would form a product
state at both poles that follows the magnetic field, then
from c++(0) = 1 and c��(⇡) = 1, we verify C

j = 1. In
the case where the two spins would be entangled at both
poles then we would obtain instead C

j = 0, reflecting that
in the presence of maximal entanglement each spin is in
a coherent superposition of up and down states with op-
posite contributions to the Chern number. A topological
charge equal to zero for the entangled state in Eq. (14)
can be equivalently obtained through a path integral in-
tegral approach [10] where the Wess-Zumino term of each
spin would cancel each other when r̃ ! +1 along the
one-dimensional path with fixed �, i.e. �

1 = ��
2.

II. GAUGE INVARIANCE AND FRACTIONAL
VALUES OF Cj

Here, we provide a geometrical proof of Eq. (12) from
vector theorems. This illustrates the intriguing fact that
the topological response can be encoded in the poles of
the Bloch sphere, which holds for both the regular Chern
number C and the partial Chern number C

j . In App. A
we provide an alternative proof based on the specific class
of wavefunctions we study. To the best of our knowl-
edge, the possibility of fractional topology was not men-
tioned in mathematics related to the Euler characteristic
and Poincaré-Hopf theorem where the spheres are non-
interacting.

The Berry connection Aj is well-defined on the ab-
stract parameter space {✓,�}. The goal in this section is
to reinterpret Aj as a vector on the surface of a sphere
S
2, and then to make use of Stokes’ theorem in three di-

mensions to evaluate the Chern number. We start from
Eq. (1):

C = �
1

2⇡

Z

S2

d
2n · (r⇥A). (18)

Here, A is computed in an arbitrary gauge, n is the nor-
mal vector to the sphere, and we have used

F�✓d✓d� = (@�A✓ �@✓A�)d✓d� = �(r⇥A) ·d2r. (19)

Note that we have dropped the j superscript since this
proof applies equally to the Chern number C and the
partial Chern number C

j .
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• Does there exist a Chern 
number for each spin?

Yes!

- well-defined.

- gauge invariant.

- robust to symmetry-
preserving 
deformations.
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We propose a two-spin quantum-mechanical model with applied magnetic fields acting on the
Poincaré-Bloch sphere, to reveal a new class of topological energy bands with Chern number one-
half for each spin-1/2. The mechanism behind this fractional topology is a two-spin product state at
the north pole and a maximally entangled state close to the south pole. The fractional Chern number
of each spin can be measured through the magnetizations at the poles. We study a precise protocol
where the spin dynamics in time reflects the Landau-Zener physics associated with energy band
crossing effects. We show a correspondence between the two-spin system and topological bilayer
models on a honeycomb lattice. These models describe semimetals with a nodal ring surrounding
the region of entanglement.

I. INTRODUCTION

The rising interest in topology in recent years has co-
incided with advancing quantum science and technology.
These fortunate circumstances allow for the direct mea-
surement of the Chern number – the invariant that de-
marcates distinct topological phases – from the expecta-
tion value of a spin-1/2 or qubit upon sweeping a mag-
netic field. In particular, if the magnetic field vector acts
radially on a sphere with polar angle ✓, and azimuthal an-
gle �, then upon adiabatically sweeping from the north
to south pole, the Chern number of a two-state system
represented by a vector of Pauli matrices � may be mea-
sured via [1–3]

C ⌘
1

2⇡

Z 2⇡

0
d�

Z ⇡

0
d✓F�✓ (1)

=
1

2

✓
h�z(✓ = 0)i � h�z(✓ = ⇡)i

◆
. (2)

Here F�✓ is the Berry curvature:

F�✓ = @�A✓ � @✓A�, (3)

and A is the Berry connection, defined from the gradient
of the ground state | i according to [4]

A↵ = ih |@↵| i. (4)

The Chern number C is equal to 0 or 1 and is associated
with a topological charge – the degeneracy point of the
Hamiltonian – contained within the sphere spanned by
the magnetic field vector. The qubit orientation mea-
sures this topological charge. Recent experiments have
studied two spin-1/2s, �1, �2, under the influence of the
radial fields H1 and H2 whose parameter manifold con-
sists of two spheres [5]. The two spins interact through a

⇤ electronic address: joel.hutchinson@polytechnique.edu
† electronic address: karyn.le-hur@polytechnique.edu

transverse coupling (�x
1�

x
2 +�

y
1�

y
2 ). Their resulting topo-

logical phase diagram consists of integer C = 0, 1 and
2 phases, corresponding to topological charges located
outside both spheres, inside one sphere, and inside both
spheres respectively. Since the spin expectation value
may be measured for each spin independently, this sug-
gests that the Chern number may also have a well-defined
component corresponding to each subsystem. First, we
provide a generalization of Eq. (4) to the Berry connec-
tion for subsystem j, whose corresponding Chern number
Cj provides a robust topological number and also serves
as a measure of entanglement. This will allow us to jus-
tify that phases with fractional Chern number are allowed
as a result of quantum entanglement between the spins.
To realize a one-half Chern number, we build a two-spin
model on the Poincaré-Bloch sphere [6]. We show the re-
lation with bilayer lattice models which exhibit a strongly
entangled region in the energy band structure. Our sys-
tems show features of a topological Haldane model [7]
and of a resonating valence bond state [8, 9], and repre-
sent a new way to realize the fractional topology of the
quantum Hall effect [10, 11].

We begin with the Berry connection for the jth spin:

A
j
↵ ⌘ ih |@

j
↵| i, (5)

along with the jth Berry curvature F
j
�✓ = @

j
�A

j
✓ � @

j
✓A

j
�,

and Chern number

C
j =

1

2⇡

Z 2⇡

0
d�

Z ⇡

0
d✓F

j
�✓. (6)

Note that the operator @
j
↵ acts on the Hilbert space

of the jth spin. This operation is well-defined pro-
vided we can decompose the ground state as | i =P

kl ckl|�k(✓,�)i1|�l(✓,�)i2, such that
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X
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ckl(@↵|�k(✓,�)i1)|�l(✓,�)i2. (7)

In fact, the model we consider affords the more relaxed
condition | i =

P
kl ckl(✓)|�k(�)i1|�l(�)i2. In this case,
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✓ is not uniquely defined, but C

j still is since

A
j
✓ = i

X

kl

c
⇤
kl(✓)@

j
✓ckl(✓), (8)

so that @j�A
j
✓ = 0 and will not contribute to the integral

over the Berry curvature. To be more precise, we consider
a model of two qubits �1 and �

2 with an Ising coupling:

H
± = �(H1 · �

1
±H2 · �

2)± r̃f(✓)�1
z�

2
z . (9)

Each magnetic field sweeps out a closed manifold param-
eterized by (✓,�) and may be distorted along the ẑ di-
rection with the addition of constant field Mi according
to [1]: Hi = (H sin ✓ cos�, H sin ✓ sin�, H cos ✓+Mi), for
i = 1, 2. We also consider a generic ✓-dependent coupling
r̃f(✓) with r̃f(✓) > 0. The ± denote two distinct classes
of models.

The subsystem Chern number C
j can be determined

for this model. While the eigenstates of (9) are in gen-
eral quite complicated, their �-dependence is very simple,
such that the ground state takes the desired form

| i =
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with k, l = ±. In the standard representation of a single
spin eigenstate in a radial magnetic field, the ground state
is | "i at the north pole, and e

i�
| #i at the south pole.

We will take these states to form our single-spin basis:
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| #i. (11)

It is important to note that while there are many ways
to represent the single-spin states |��(�)i and |�+(�)i,
their relative phase e

i� is fixed by the form of the Hamil-
tonian. The Berry connection is then expressed in terms
of the coefficients ckl(✓)
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will contribute 0 or 1 to the Berry connection, while an
entangled state such as 1p
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So that we have the general result
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(15)

This leads to an intriguing case. Suppose we prepare a
system whose ground state evolves from a product state
at the ✓ = 0 to an entangled state at the ✓ = ⇡:

| "i1| "i2 !
1
p
2
(| "i1| #i2 + | #i1| "i2). (16)
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FIG. 1. Topological phase diagram for the Chern number of
each spin in the (M2, r̃) plane. Here we have set M1 = H/3.
The gold line at M2 = M1 indicates the symmetric phase
C1 = C2 = 1

2 .

Then the non-zero coefficients are |c++(0)|2 = 1,
|c+�(⇡)|2 = |c�+(⇡)|2 = 1

2 , for which

C
1 = C

2 =
1

2
. (17)

The presence of entanglement at one pole leads to a frac-
tional Chern number for each spin. Eq. (15) also leads
to the generalization of Eq. (2), since from the normal-
ization we have,

h�
1
z(✓)i = 1� 2(|c�+(✓)|

2 + |c��(✓)|
2)

h�
2
z(✓)i = 1� 2(|c+�(✓)|

2 + |c��(✓)|
2),

(18)

so that

C
j =
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2

✓
h�

j
z(✓ = 0)i � h�

j
z(✓ = ⇡)i

◆
. (19)

In the case where the two spins would form a product
state at both poles that follows the magnetic field, then
from c++(0) = 1 and c��(⇡) = 1, we verify C

j = 1. In
the case where the two spins would be entangled at both
poles then we would obtain instead C

j = 0, reflecting that
in the presence of maximal entanglement each spin is in
a coherent superposition of up and down states with op-
posite contributions to the Chern number. A topological
charge equal to zero for the entangled state in Eq. (16)
can be equivalently obtained through a path integral in-
tegral approach [12] where the Wess-Zumino term of each
spin would cancel each other when r̃ ! +1 along the
one-dimensional path with fixed �, i.e. �

1 = ��
2.

The topological phase diagram for our model is entirely
determined by the energetics at the poles. For clarity,
we present just the H

+ sector for now. At the poles, the
Hamiltonian is diagonal in the �z basis, and we have at
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so that @j�A
j
✓ = 0 and will not contribute to the integral

over the Berry curvature. To be more precise, we consider
a model of two qubits �1 and �

2 with an Ising coupling:

H
± = �(H1 · �

1
±H2 · �

2)± r̃f(✓)�1
z�

2
z . (9)

Each magnetic field sweeps out a closed manifold param-
eterized by (✓,�) and may be distorted along the ẑ di-
rection with the addition of constant field Mi according
to [1]: Hi = (H sin ✓ cos�, H sin ✓ sin�, H cos ✓+Mi), for
i = 1, 2. We also consider a generic ✓-dependent coupling
r̃f(✓) with r̃f(✓) > 0. The ± denote two distinct classes
of models.

The subsystem Chern number C
j can be determined

for this model. While the eigenstates of (9) are in gen-
eral quite complicated, their �-dependence is very simple,
such that the ground state takes the desired form

| i =
X

kl

ckl(✓)|�k(�)i1|�l(�)i2, (10)

with k, l = ±. In the standard representation of a single
spin eigenstate in a radial magnetic field, the ground state
is | "i at the north pole, and e

i�
| #i at the south pole.

We will take these states to form our single-spin basis:

|�+(�)i = | "i, |��(�)i = e
i�
| #i. (11)

It is important to note that while there are many ways
to represent the single-spin states |��(�)i and |�+(�)i,
their relative phase e

i� is fixed by the form of the Hamil-
tonian. The Berry connection is then expressed in terms
of the coefficients ckl(✓)

A
1
� = �|c�+(✓)|

2
� |c��(✓)|

2 (12)
A

2
� = �|c+�(✓)|

2
� |c��(✓)|

2
. (13)

Note that product states such as | "i1| "i2 or | #i1| #i2

will contribute 0 or 1 to the Berry connection, while an
entangled state such as 1p

2
(| "i1| #i2 + | #i1| "i2) will

contribute 1/2. The Chern number for the jth spin is
then

C
i = �

1

2⇡

Z 2⇡

0
d�

Z ⇡

0
d✓@

i
✓A

i
�

= �(Ai
�(⇡)�A

i
�(0)). (14)

So that we have the general result

C
1 = |c�+(⇡)|

2 + |c��(⇡)|
2
� |c�+(0)|

2
� |c��(0)|

2

C
2 = |c+�(⇡)|

2 + |c��(⇡)|
2
� |c+�(0)|

2
� |c��(0)|

2
.

(15)

This leads to an intriguing case. Suppose we prepare a
system whose ground state evolves from a product state
at the ✓ = 0 to an entangled state at the ✓ = ⇡:

| "i1| "i2 !
1
p
2
(| "i1| #i2 + | #i1| "i2). (16)
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FIG. 1. Topological phase diagram for the Chern number of
each spin in the (M2, r̃) plane. Here we have set M1 = H/3.
The gold line at M2 = M1 indicates the symmetric phase
C1 = C2 = 1

2 .

Then the non-zero coefficients are |c++(0)|2 = 1,
|c+�(⇡)|2 = |c�+(⇡)|2 = 1

2 , for which

C
1 = C

2 =
1

2
. (17)

The presence of entanglement at one pole leads to a frac-
tional Chern number for each spin. Eq. (15) also leads
to the generalization of Eq. (2), since from the normal-
ization we have,

h�
1
z(✓)i = 1� 2(|c�+(✓)|

2 + |c��(✓)|
2)

h�
2
z(✓)i = 1� 2(|c+�(✓)|

2 + |c��(✓)|
2),

(18)

so that

C
j =

1

2

✓
h�

j
z(✓ = 0)i � h�

j
z(✓ = ⇡)i

◆
. (19)

In the case where the two spins would form a product
state at both poles that follows the magnetic field, then
from c++(0) = 1 and c��(⇡) = 1, we verify C

j = 1. In
the case where the two spins would be entangled at both
poles then we would obtain instead C

j = 0, reflecting that
in the presence of maximal entanglement each spin is in
a coherent superposition of up and down states with op-
posite contributions to the Chern number. A topological
charge equal to zero for the entangled state in Eq. (16)
can be equivalently obtained through a path integral in-
tegral approach [12] where the Wess-Zumino term of each
spin would cancel each other when r̃ ! +1 along the
one-dimensional path with fixed �, i.e. �

1 = ��
2.

The topological phase diagram for our model is entirely
determined by the energetics at the poles. For clarity,
we present just the H

+ sector for now. At the poles, the
Hamiltonian is diagonal in the �z basis, and we have at

Radial magnetic fields (angle-dependent) Ising interaction

North: 
Product state

South: 
Entangled state

1 2

(can also be obtained with 
interaction that increases with angle) 

~H = (H sin ✓ cos�, H sin ✓ sin�, cos ✓ +M)T
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FIG. 8. a)-d) Spin responses h�1i (on the blue sphere) and
h�2i (on the orange sphere) to a sweep protocol of the ra-
dial applied magnetic field along a meridian of the sphere
with v = 0.0001H. The time-dependent spin vector shown in
red (measured in units of H) is determined from the numeri-
cal solution of the Schrödinger equation. The radius of each
sphere is H. a)-c) show an asymmetric case with M1 = H/3,
M2 = H/2. a) r̃ = 0.25H. b) r̃ = 0.9H. c) r̃ = 1.7H. d-f)
shows the symmetric mass case with M1 = M2 = 3H/4. d)
Spin response for r̃ = H/3. In this case, the magnitude of the
spin vector vanishes at the south pole yielding Cj = 1/2. e)
Chern number of a single spin versus r̃/H for different sweep
velocities with f(✓) = 1. The solid lines show the analytic
approximation of Eq. (117), while the dotted lines show the
result from the numerical solution to the Schrödinger equa-
tion. (f) Numerically determined Chern number of a single
spin vs r̃f(⇡)/H shown by the solid lines for different interac-
tions with v = 0.05H; ⇥ refers to the Heaviside step function.
The dashed black line shows the analytic approximation of
Eq. (117) which is universal for a given speed v.

in terms of the gamma function �(z). We can check the
adiabatic limit of this formula, v ! 0 (� ! 1). To do
so we make use of the following asymptotic expansions
for |z| ! 1:

ln�(z) ⇡ (z � 1/2) ln(z)� z +
1

2
ln(2⇡) (118)

ln(a± iz) ⇡ ±
i⇡

2
� ln

✓
1

z

◆
⌥

ia

z
, (119)

to get

�(1/2 + i�/4)�(1� i�/4) ⇡ ⇡
p
�e

�⇡�/4
e
�i⇡/4

, (120)

FIG. 9. Topological phases for the anisotropic spin model
with rxy = �H/2, M = H/2, f(✓) = g(✓) = 1 determined
from numerical time-evolution with v = 0.005H.

so that

C
j
!

3

4
�

1

4
sgn(�), (121)

which gives 1 for r̃ < (H � M)/f(⇡) and 1/2 for r̃ >

(H�M)/f(⇡) as expected. We also compute numerically
the time evolution of the interacting spins in this protocol
(Fig. 8). Our analytic result for Cj is then compared with
the corresponding numerical value in Fig. 8 e) and f). We
see that this formula accurately captures the transition
in C

j for small sweep velocities. At higher velocities,
deviations occur due to the presence of higher excited
states.

We also find, by checking many examples, that the
shape of the transition is independent of the particular
form of time-dependant interaction f(✓), which for small
sweep velocities only shifts the transition point.

Finally, we verify that the time evolution in the
anisotropic spin model of Sec. III B agrees with the phase
diagrams shown in Fig. 2 and 3. In Fig. 9, we show a
cut through the phase diagram of the anisotropic spin
model with M 6= 0 and constant interaction at fixed rxy,
computing the partial Chern number from the spin ex-
pectation value at the ends of the sweep protocol. Note
that the anomalous upturn at rz = 1 is due to the fact
that the ground state at t = 0 is degenerate at that
point, so the sweep protocol is not well-defined there.
In Fig. 10 we show a cut through the phase diagram of
the anisotropic spin model without Semenoff mass terms
but an inversion-symmetry-breaking interaction at fixed
rxy. Again the anomaly at rz = �H/2 is due to the
degeneracy at the north pole.

VI. CONCLUSION

Our analysis shows that one can realize quantum states
with fractional topology from the interplay between
Berry curvatures and resonating valence bond states [7–
9]. We have shown how quantum entanglement between
two spins can produce a Chern number of one-half for
each spin. We have provided a geometrical and physical
interpretation of this result. In addition, we have pro-
posed a measurement through the spin magnetizations

f(✓) = 1
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h�2i (on the orange sphere) to a sweep protocol of the ra-
dial applied magnetic field along a meridian of the sphere
with v = 0.0001H. The time-dependent spin vector shown in
red (measured in units of H) is determined from the numeri-
cal solution of the Schrödinger equation. The radius of each
sphere is H. a)-c) show an asymmetric case with M1 = H/3,
M2 = H/2. a) r̃ = 0.25H. b) r̃ = 0.9H. c) r̃ = 1.7H. d-f)
shows the symmetric mass case with M1 = M2 = 3H/4. d)
Spin response for r̃ = H/3. In this case, the magnitude of the
spin vector vanishes at the south pole yielding Cj = 1/2. e)
Chern number of a single spin versus r̃/H for different sweep
velocities with f(✓) = 1. The solid lines show the analytic
approximation of Eq. (117), while the dotted lines show the
result from the numerical solution to the Schrödinger equa-
tion. (f) Numerically determined Chern number of a single
spin vs r̃f(⇡)/H shown by the solid lines for different interac-
tions with v = 0.05H; ⇥ refers to the Heaviside step function.
The dashed black line shows the analytic approximation of
Eq. (117) which is universal for a given speed v.

in terms of the gamma function �(z). We can check the
adiabatic limit of this formula, v ! 0 (� ! 1). To do
so we make use of the following asymptotic expansions
for |z| ! 1:
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which gives 1 for r̃ < (H � M)/f(⇡) and 1/2 for r̃ >

(H�M)/f(⇡) as expected. We also compute numerically
the time evolution of the interacting spins in this protocol
(Fig. 8). Our analytic result for Cj is then compared with
the corresponding numerical value in Fig. 8 e) and f). We
see that this formula accurately captures the transition
in C

j for small sweep velocities. At higher velocities,
deviations occur due to the presence of higher excited
states.

We also find, by checking many examples, that the
shape of the transition is independent of the particular
form of time-dependant interaction f(✓), which for small
sweep velocities only shifts the transition point.

Finally, we verify that the time evolution in the
anisotropic spin model of Sec. III B agrees with the phase
diagrams shown in Fig. 2 and 3. In Fig. 9, we show a
cut through the phase diagram of the anisotropic spin
model with M 6= 0 and constant interaction at fixed rxy,
computing the partial Chern number from the spin ex-
pectation value at the ends of the sweep protocol. Note
that the anomalous upturn at rz = 1 is due to the fact
that the ground state at t = 0 is degenerate at that
point, so the sweep protocol is not well-defined there.
In Fig. 10 we show a cut through the phase diagram of
the anisotropic spin model without Semenoff mass terms
but an inversion-symmetry-breaking interaction at fixed
rxy. Again the anomaly at rz = �H/2 is due to the
degeneracy at the north pole.

VI. CONCLUSION

Our analysis shows that one can realize quantum states
with fractional topology from the interplay between
Berry curvatures and resonating valence bond states [7–
9]. We have shown how quantum entanglement between
two spins can produce a Chern number of one-half for
each spin. We have provided a geometrical and physical
interpretation of this result. In addition, we have pro-
posed a measurement through the spin magnetizations

11

of the path, i.e. at the north and south poles. Any
finite velocity will lead to non-adiabatic transitions via
the Landau-Zener mechanism [32, 33], which describes a
time-dependent two-state model of the form

H = �t�z +��x, (99)

with the time-dependent state

| (t)i = A(t)| "i+B(t)| #i. (100)

The above amplitudes were derived in Ref. [32] for the
asymptotic case t ! 1. Here we are actually interested
in the values at t = 0, which are derived in App. C.
Defining z ⌘

q
2�
~ e

�i⇡/4
t, the result is

A(z) = sgn(�)ei3⇡/4e�⇡�/8
D�i�/2(�iz), (101)

B(z) =

r
�

2
e
�⇡�/8

D�1�i�/2(�iz), (102)

where D⌫(z) are the parabolic cylinder functions, and
� ⌘

�2

�
is the appropriate measure of adiabaticity (in

natural units). Even though the two-qubit model (32) is
a four-state system, we now show that the dynamics of
this model are well captured by Eqs. (101), (102). We
consider the case of symmetric masses M1 = M2 = M <

H.
First, we write the Hamiltonian in the singlet-triplet

basis using Eqs. (47) and (48) with s = �
1 + �

2. For
simplicity we focus on the Ising case with rxy = 0, rz ⌘ r̃.
Then,

H
+
trip =

1

2
r̃f(✓)s2

z
�H

p

2 sin ✓sx�(H cos ✓+M)sz�r̃f(✓)I,
(103)

where we have made use of the Gell-Mann matrices

sx =

0

B@
0 1 0

1 0 1

0 1 0

1

CA sz = 2

0

B@
1 0 0

0 0 0

0 0 �1

1

CA , (104)

represented in the triplet basis

|1, 1i = (1, 0, 0)T (105)
|1, 0i = (0, 1, 0)T (106)

|1,�1i = (0, 0, 1)T . (107)

The singlet component is completely decoupled from the
equations of motion, provided we initialize the spins in
the ground state at the north pole, which is the triplet
state |1, 1i for r̃ < (H + M)/f(0) (the ground state is
|1, 0i otherwise).

The total Chern number is encoded in the sz expecta-
tion value according to

C = hsz(✓ = 0)i � hsz(✓ = ⇡)i. (108)

To simplify the dynamics further we assume that any
transitions to excited states occur near ✓ = ⇡. This as-
sumption is justified because for a broad class of inter-
actions, the gap at ✓ = 0 is much larger than at ✓ = ⇡.

Near ✓ = ⇡ the |1, 1i state always has the highest energy,
so we may project it out and write an effective two-state
model to match the Landau-Zener model. The resulting
effective two-state Hamiltonian is

H
+
e↵ = �[r̃f(✓) +H cos ✓ +M ]�z

�

p

2H sin ✓�x

+(H cos ✓ +M)I, (109)

where the basis for the Pauli matrices is now |1, 0i =
(1, 0)T , |1,�1i = (0, 1)T . We see that the entangled
state |1, 0i is indeed the unique ground state at ✓ = ⇡ for
r̃ sufficiently large. More precisely, the window in which
the ground state evolves from |1, 1i at the north pole to
|1, 0i at the south pole, and therefore has C

j = 1/2, is
given by

H �M

f(⇡)
< r̃ <

H +M

f(0)
. (110)

We see that this phase is more easily stabilized by an
interaction that grows with ✓.

Returning to the dynamics of (109), we expand near
✓ = ⇡, such that t ! t � ⇡/v, and rotate the Pauli
matrices about the y-axis to get

H
+
e↵ !

p

2Hvt�z + [r̃f(⇡)�H +M ]�x. (111)

In the rotated basis, we have

1
p
2
(|1,�1i+ |1, 0i) = (1, 0)T (112)

1
p
2
(�|1,�1i+ |1, 0i) = (0, 1)T . (113)

We have assumed that the linear terms in the Taylor
expansion of f(✓ ⇡ ⇡) are zero, but relaxing this con-
dition does not affect the result noticeably, as shown in
Fig. 8 e) and f). The effective Hamiltonian takes the
Landau-Zener form in Eq. (99), with

� ⌘

p

2Hv, � = r̃f(⇡)�H +M, (114)

and adiabaticity parameter � = �2
/�. Thus the ampli-

tude for measuring the |1,�1i state is 1p
2
(A(t) � B(t)),

while the amplitude for measuring the entangled state
is 1p

2
(A(t) + B(t)). The former results in C

j = 1, upon
sweeping to the south pole (now at t = 0) while the latter
gives C

j = 1/2. The value of Cj is then

C
j
⇡

1

2
|A(0)�B(0)|2 +

1

4
|A(0) +B(0)|2 (115)

=
3

4
�

1

4
Re(A(0)B⇤(0)). (116)

The product A(0)B(0)⇤ is evaluated in App. C
(Eq. (C31)), which yields

C
j
⇡

3

4
+
⇡

4
Re

✓
e
i3⇡/4

e
��⇡/4 sgn(�)

p
�

�(1/2 + i�/4)�(1� i�/4)

◆
,

(117)
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Non- Adiabatic Crossing of Energy Levels.

By Cl a r e n c e  Ze n e r , National Research Fellow of U.S.A. 

(Communicated by R. H. Fowler, F.R.S.—Received July 19, 1932.)

1. Introduction.

The crossing of energy levels has been a matter of considerable discussion.* 
The essential features may be illustrated in the crossing of a polar and homo- 
polar state of a molecule.

E,

Fig . 1.—Crossing of polar and homopolar states.

Let 4»i (z/R), 4*2 (®/H) be two electronic eigenfunctions of a molecule with 
stationary nuclei. Let these eigenfunctions have the property that for 
R R0, 4i has polar characteristics, (j'a homopolar; while at R R0> 4 a 
has polar characteristics, 4i homopolar. In the region R =  R0 these two 
eigenfunctions may be said to exchange their characteristics.

The adiabatic theorem tells us that if the molecule is initially in state 
and R changes infinitely slowly from R R0 to R Ro> then the molecule 
will remain in state ^ 2* However, if R changes with a finite velocity, the final 
state 4 (a?/R) will be a linear combination

4 (z/R) =  Ax (R) 4! (z/R) +  A2 (R) 42 (z/R). (1)

Neumann and Wigner ( loc. cit.) have found the conditions for which

, A ^ O ,  |A2| - 1
and

I Ai| ~~ 1, A2 ~  0,

* Hand, ‘ Z. Physik,’ vol. 40, p. 742 (1927); Neumann and Wigner, ‘ Phys. Z.,’ vol. 30, 
p. 407 (1929); Kemble and Zener, ‘ Phys. Rev.,’ vol. 33, p. 536 (1929).

� =
�2

p
2Hv
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Adiabaticity:

f(✓) = 1
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• Check with 2nd-order 
perturbation theory to 
find g.s. at south pole:

Figure 7: Phase diagram for for the generalized spin model with M = 0 and ✓-dependent interactions
f(✓) = g(✓) = sin(✓ � ⇡/2).

! !

"

"
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"
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Figure 8: 4-spin and 3-spin configurations considered in this paper. z denotes an antiferromagnetic Ising
interaction: r�z

i
�
z

j
, r > 0. x denotes a transverse coupling rx�

x

i
�
x

j
. Configuration (a) yields an integer-valued

C
j for all spins, while (b) and (c) produce rational values of Cj .
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The topological phase diagram in the plane of the couplings is shown in Fig. 6. For M < H, the fractional
Chern number phase forms a wedge between the C

j = 0 and C
j = 1 phases, while for M > H, the C

j = 1
phase is taken over by C

j = 0.
In the main article, we found that we could extend the fractional Chern region by breaking inversion

symmetry, either through the inclusion of a constant offset M 6= 0, or an asymmetric coupling rz ! rzf(✓).
If we do the same in the generic anisotropic model (with rxy ! rxyg(✓)), we can also get an extended region
of Cj = 1/2. It is redundant to include both inversion-symmetry breaking mechanisms, so we set M = 0 in
the following. In that case, the condition for a |1, 1i ! |1, 0i transition relaxes to

rzf(0)�H < rxyg(0) < H � rzf(0), (103)
rxyg(⇡) < rzf(⇡)�H. (104)

However, the ✓-dependent interactions also open up the possibility of a transition from |1, 0i to |1,�1i (the
transition |1, 0i ! |1, 1i is forbidden for M = 0). This occurs when

rxyg(0) < min{0,�H + rzf(0)} (105)
H + rzf(⇡) < rxyg(⇡). (106)

Some examples of interactions that break inversion symmetry are:

• f(✓) = g(✓) = ⇡ � |⇡ � ✓|: The fractional Chern number appears in the entire half-plane

rxy < rz �
H

⇡
. (107)

• f(✓) = g(✓) = sin(✓ � ⇡/2): Intriguingly, the fractional Chern number appears in two separated
domains:

�H � rz < rxy < rz �H, (108)

and
rxy > max{0, rz +H}. (109)

This unusual phase diagram is shown in Fig. 7.

4 N spins

Here we discuss the fractional phase for more than two spins. Without specifying any details of the model,
we know that the fractional Chern number arises when the ground state changes from a ferromagnet at
the north pole to a degenerate antiferromagnet at the south pole. This can be achieved through inversion-
symmetry-breaking masses or ✓-dependent interactions as we have seen. The key observation in the case of
two spins was that the presence of an infinitesimal transverse field breaks the ground-state degeneracy near
the south pole and favours the entangled state. Specifically, in the subspace of south-pole ground states for
the Ising-coupled model with M1 = M2: D ⌘ {| "#i, | #"i}, with energy ED = �r̃, we apply second-order
degenerate perturbation theory

He↵ = PH
0
P + PH

0 1� P

ED �H0
H

0
P, (110)

where P ⌘
P

↵2D |↵ih↵| is the projection operator on the south-pole ground-state subspace, and

H
0
⌘ �H sin ✓(�x

1 + �
x

2 ), (111)

This yields the effective perturbation

He↵ = �
H

2 sin2 ✓r̃

r̃2 � (H �M)2

✓
1 1
1 1

◆
, (112)

whose unique ground state 1p
2
(| "#i+ | #"i).

11

We can generalize this reasoning to chains with more spins. For four spins, all antiferromagnetically
coupled, the south-pole ground states are the two Néel states. The degeneracy is preserved at second order
in the perturbation, but fourth order spin-flip terms will choose the ground state 1p

2
(| "#"#i+ | #"#"i). This

is a maximally entangled state, and an analogue of the Greenberger-Horne-Zeilinger state which again has
C
j = 1/2 for all j. A chain of 2N spins require 2N orders of perturbation theory to lift the degeneracy, so

the gap near ✓ = ⇡ will be reduced as (H sin ✓)2N .
Let us now consider a different four-spin model corresponding to two Chern one-half systems with a weak

transverse coupling. We would like to know if the fractional invariant is robust to this coupling. In the
absence of the perturbative coupling, the ground state at the south pole is

D = {| "#"#i, | "##"i, | #""#i, | #"#"i}. (113)

If we couple the two systems at just one site via a term H
0 = r

0
�
x

2�
x

3 as shown in Fig. 8 (a), then the second
order perturbation is

He↵ = �
r
02

4
diag

⇢
1

r̃
,

1

r̃ +H �M
,

1

r̃ �H +M
,
1

r̃

�
. (114)

For r̃ > H � M , this favours the state | #""#i with an energy shift of �r
02

4(r̃�H+M) . This is due to virtual
excitations of the of the fully polarized state aligned with the magnetic field. In this case the fractional
Chern number is destroyed and C

j = {1, 0, 0, 1}. This is because fractional Cj state is only protected by
exchange symmetry of the spins. However, we can also construct a perturbative coupling that respects this
symmetry, for example, by adding r

0
�
x

1�
x

4 as shown in Fig. 8 (b). In this case we have

He↵ = �
r
02

2

0

BB@

1
r̃

0 0 1
r̃

0 r̃

r̃2�(H�M)2
r̃

r̃2�(H�M)2 0

0 r̃

r̃2�(H�M)2
r̃

r̃2�(H�M)2 0
1
r̃

0 0 1
r̃

1

CCA . (115)

Upon diagonalization, this gives the unique ground state 1p
2
(| "##"i+ | #""#i), with C

j = 1/2 as expected.
Other fractional Chern numbers can appear if we introduce frustration in the system without breaking

spin-exchange symmetry. For three antiferromagnetically coupled spins as shown in Fig. 8 (c), the ground
state at ✓ = ⇡ is

D = {| ##"i, | #"#i, | "##i}. (116)

The transverse field �H sin ✓
P3

i=1 �
x

i
, yields the second-order perturbation

He↵ = �
H

2 sin2 ✓

2(H �M)(H �M � 2r̃)

0

B@

1
2(H�M�4r̃) �r̃ �r̃

�r̃
1

2(H�M�4r̃) �r̃

�r̃ �r̃
1

2(H�M�4r̃)

1

CA .

(117)

Upon diagonalizing, the ground state is 1p
3
(| ##"i + | #"#i + | ", ##i). The corresponding partial Chern

numbers are C
j = 2

3 for all j. This reasoning can be applied to higher numbers of spin as well. For odd
N > 1 spins, the N -fold degenerate space of frustrated antiferromagnets at the south pole is

D = {| ##"# . . . "i, | "##"# . . . #i, . . . , | #" . . . "#i}. (118)

Each of these states can be written as |↵i where ↵ indexes the site location of the ferromagnetic pair. At
second order in perturbation theory, the transverse field has a diagonal contribution

h↵|He↵ |↵i = H
2 sin2 ✓

✓
2r̃

(H �M)(H �M � 2r̃)
+

(H �M)� r̃(2N � 8)

2(4r̃2 � (H �M)2

◆
, (119)

from flipping a single spin twice. The only off-diagonal contributions come from flipping one spin in the
ferromagnetic pair along with it’s neighbour outside the pair. This is equivalent to shifting the pair by two
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We can generalize this reasoning to chains with more spins. For four spins, all antiferromagnetically
coupled, the south-pole ground states are the two Néel states. The degeneracy is preserved at second order
in the perturbation, but fourth order spin-flip terms will choose the ground state 1p

2
(| "#"#i+ | #"#"i). This

is a maximally entangled state, and an analogue of the Greenberger-Horne-Zeilinger state which again has
C
j = 1/2 for all j. A chain of 2N spins require 2N orders of perturbation theory to lift the degeneracy, so

the gap near ✓ = ⇡ will be reduced as (H sin ✓)2N .
Let us now consider a different four-spin model corresponding to two Chern one-half systems with a weak

transverse coupling. We would like to know if the fractional invariant is robust to this coupling. In the
absence of the perturbative coupling, the ground state at the south pole is
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For r̃ > H � M , this favours the state | #""#i with an energy shift of �r
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4(r̃�H+M) . This is due to virtual
excitations of the of the fully polarized state aligned with the magnetic field. In this case the fractional
Chern number is destroyed and C
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Upon diagonalization, this gives the unique ground state 1p
2
(| "##"i+ | #""#i), with C

j = 1/2 as expected.
Other fractional Chern numbers can appear if we introduce frustration in the system without breaking

spin-exchange symmetry. For three antiferromagnetically coupled spins as shown in Fig. 8 (c), the ground
state at ✓ = ⇡ is

D = {| ##"i, | #"#i, | "##i}. (116)

The transverse field �H sin ✓
P3

i=1 �
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, yields the second-order perturbation

He↵ = �
H
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Upon diagonalizing, the ground state is 1p
3
(| ##"i + | #"#i + | ", ##i). The corresponding partial Chern

numbers are C
j = 2

3 for all j. This reasoning can be applied to higher numbers of spin as well. For odd
N > 1 spins, the N -fold degenerate space of frustrated antiferromagnets at the south pole is

D = {| ##"# . . . "i, | "##"# . . . #i, . . . , | #" . . . "#i}. (118)

Each of these states can be written as |↵i where ↵ indexes the site location of the ferromagnetic pair. At
second order in perturbation theory, the transverse field has a diagonal contribution

h↵|He↵ |↵i = H
2 sin2 ✓

✓
2r̃

(H �M)(H �M � 2r̃)
+

(H �M)� r̃(2N � 8)

2(4r̃2 � (H �M)2

◆
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from flipping a single spin twice. The only off-diagonal contributions come from flipping one spin in the
ferromagnetic pair along with it’s neighbour outside the pair. This is equivalent to shifting the pair by two
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Cj = 2/3
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• Models that admit fractional invariants:

- 2-spin Ising coupled

- 2-spin XY coupled

- 2-spin Heisenberg

- 2-spin anisotropic Heisenberg

- Inversion symmetric

- 4-spin ZXZ box

- 4-spin ZXZX box

- Even-N Ising chain

- Odd-N Ising chain

1/2

1/2

X

1/2

X

1/2

X

1/2

(N+1)/2N



16

FIG. 11. Orientation of vectors on the hexagonal lattice.

is clearly not single-valued at any pole, but its Berry
connections

A
1
�
(✓ = 0) = 1/3, A

1
�
(✓ = ⇡) = �1/6, (A53)

A
2
�
(✓ = 0) = �1/2, A

2
�
(✓ = ⇡) = �1, (A54)

still give C
1 = C

2 = 1/2.

Appendix B: Definitions for the Haldane model

For the bilayer model we use the following definitions.
We set the lattice spacing to a = 1. The Bravais lattice
consists of A and B sites with primitive vectors

u1 =
1

2
(3,

p

3), (B1)

u2 =
1

2
(3,�

p

3), (B2)

nearest-neighbour vectors

a1 =
1

2
(1,

p

3),

a2 =
1

2
(1,�

p

3),

a3 = (�1, 0),

and next-nearest-neighbour vectors

b1 =
1

2
(�3,

p

3)

b2 =
1

2
(3,

p

3)

b3 = (0,�
p

3)

as shown in Fig. 11.
The reciprocal lattice has a primitive cell defined by

v1 =
2⇡

3
(1,

p

3),

v2 =
2⇡

3
(1,�

p

3).

FIG. 12. First Brillouin zone of the honeycomb lattice.

The diamond formed by v1, v2 is used to plot Fig. 5 b)
and c). Some important points in the Brillouin zone are

K =
2⇡

3

✓
1,

1
p
3

◆

K
0 =

2⇡

3

✓
1,�

1
p
3

◆

M =
2⇡

3
(1, 0)

M
0 =

⇡

3
(1,

p

3),

as shown in Fig. 12.
For a single layer, we start with the tight-binding

Hamiltonian for graphene with nearest-neighbour hop-
ping t1 and Semenoff mass Mi, which is given by

H1 = t1

X

rA

3X

i=1

c
†
B
(rA + ai)cA(rA) + h.c.

+Mi

 
X

rA

c
†
A
(rA)cA(rA)�

X

rB

c
†
B
(rB)cB(rB)

!
.

(B3)

To construct the Haldane model, we add next-nearest-
neighbour hopping t2 with flux � oriented as in Fig. 13,
via the term

H2 = t2

3X

i=1

✓X

rA

c
†
A
(rA)cA(rA + bi)e

i�

+
X

rB

c
†
B
(rB)cB(rB + bi)e

�i�

◆
+ h.c. (B4)

Fourier transforming H1 + H2 gives the single-layer
Hamiltonian

H =
X

k

⇣
c
†
Ak c

†
Bk

⌘
h(k)

 
cAk

cBk

!

h(k) = d(k) · � + ✏I, (B5)
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FIG. 13. Next-nearest neighbour hoppings and flux orienta-
tion for the Haldane model.

where

dx(k) = �t1

3X

i=1

cos(k · ai) (B6)

dy(k) = �t1

3X

i=1

sin(k · ai) (B7)

dz(k) = �2t2 sin�
3X

i=1

sin(k · bi) +M (B8)

✏ = �2t2 cos�
3X

i=1

cos(k · bi). (B9)

At the Dirac points K, K 0, we have

d = dz = ±3
p

3t2 sin�. (B10)

Appendix C: Landau-Zener derivation

In this paper we are interested in transition amplitudes
of a two-state system at finite times, since the linear
sweep protocol on a sphere takes place over a finite time.
To that end, it is worth deriving the full time-dependent
amplitudes for different states of the Hamiltonian

H = �t�z +��x, (C1)

using Zener’s derivation [32] as a guide. The instanta-
neous eigenenergies and eigenstates of this system are:

E± = ±

p
�2t2 +�2 ⌘ ±E (C2)

| ±i =
1p

�2 + (E � �t)2

 
�t± E

�

!
. (C3)

It is important to note that these eigenstates change char-
acter as t goes from �1 to +1. Since E ! ±�t as

t ! ±1, we have

| �(�1)i =

 
1

0

!
= | +(+1)i (C4)

| �(+1)i =

 
0

1

!
= | +(�1)i. (C5)

In other words, if the evolution is adiabatic (i.e. we track
the ground state as t increases), then the spin will nec-
essarily flip. The Landau-Zener result says that if the
evolution is not completely adiabatic (in a sense we will
soon make precise), then there is a significant probability
of ending up in the excited state where the spin has not
flipped. Also note that exactly at t = 0, the eigenstates
are equal combinations of up and down:

| ±(0)i =
1
p
2

 
±1

sgn(�)

!
. (C6)

We wish to solve the time-dependent Schrödinger equa-
tion. We represent the quantum state as

| (t)i = A(t)| "i+B(t)| #i, (C7)

so that we have two coupled differential equations

Ȧ(t) +
i�

~ A(t) +
i�

~ B(t) = 0 (C8)

Ḃ(t) +
i�

~ A(t)�
i�

~ tB(t) = 0. (C9)

Differentiating the second equation gives

B̈(t) +
i�

~ Ȧ(t)�
i�

~ B(t)�
i�

~ tḂ(t) = 0. (C10)

Substituting Eqs. (C8) and (C9) into this gives

B̈(t) +

✓
�2

~ +
�
2
t
2

~2 �
i�

~

◆
B(t) = 0. (C11)

We can put this differential equation in the form of the
Weber equation [34, Eq. 12.2.2] by using the dimension-
less quantity

z ⌘

r
2�

~ e
�i⇡/4

t, (C12)

so that
d
2
B(z)

dz2
+

✓
i�2

2�~ +
1

2
�

z
2

4

◆
B(z) = 0, (C13)

which has the linearly independent solutions

B(z) = c1D⌫(z) + c2D�1�⌫(�iz). (C14)

Here we have defined ⌫ ⌘ i
�2

2�~ , and D⌫(z) are the
parabolic cylinder functions. From Eq. (C9), we also get
the solution for A:

A(t) =
i~
�
Ḃ(t) +

�t

�
B(t) (C15)

) A(z) =

p
2�~
�

e
i⇡/4

⇣
B

0(z) +
z

2
B(z)

⌘
. (C16)
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• Compute the total Chern number:
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Figure 1: a) Spin model: topological phase diagram for the Chern number of each spin in the

(M2, r̃) plane. Here we have set M1 = H/3. The gold line at M2 = M1 indicates the symmetric

phase C
1 = C

2 = 1
2 . The insets illustrate (adiabatically deformed) spheres corresponding to the

parameter space spanned by the effective field for spin 1 (blue) and spin 2 (orange) in each phase.

The topological charge at the origin is indicated by the red dot. Along the gold line the effective-

field manifold (which is identical for each spin) is in a coherent superposition of containing and

not containing the monopole yielding a Chern number of 1/2 for each spin. b) Lattice model:

topological phase diagram in the (M2, r) plane for the total Chern number at half-filling, defined

with the two lowest occupied bands. The gold line at M2 = M1 indicates the symmetric phase for

which the gap is closed. The parameters t1 and |dz| = 3
p
3t2 in the Haldane model are shown in

the Supplementary Information. 22

Hexagonal lattice Spheres
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The topological charge at the origin is indicated by the red dot. Along the gold line the effective-

field manifold (which is identical for each spin) is in a coherent superposition of containing and

not containing the monopole yielding a Chern number of 1/2 for each spin. b) Lattice model:

topological phase diagram in the (M2, r) plane for the total Chern number at half-filling, defined

with the two lowest occupied bands. The gold line at M2 = M1 indicates the symmetric phase for

which the gap is closed. The parameters t1 and |dz| = 3
p
3t2 in the Haldane model are shown in

the Supplementary Information. 22
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FIG. 6. a) Topological phase diagram in the (M2, r) plane
for the total Chern number at half-filling. The gold line at
M2 = M1 indicates the symmetric phase for which the gap
is closed. b)-d): Spectra computed at different points in the
phase diagram for a ribbon geometry with M1 =

p
3/3t1.

The bilayer consists of 30 ⇥ 50 sites with periodic boundary
conditions in the x-direction. b) M2 = 0.5

p
3t1, r = 2.75t1.

c) M2 = 0.5
p
3t1, r = 0.75t1. d) M2 = 0.65

p
3t1, r = 1.25t1.

band crossing region. Here, the entanglement entropy
goes to the maximal value ln 4. The halved Chern num-
ber we compute then means that one Dirac point is char-
acterized by curved arcs forming a nodal ring enclosing
the entangled region. Since the two Dirac points map to
the two poles on the spheres, this emphasizes the corre-
spondence between the two-spin and the lattice model.
Regarding the bulk-edge correspondence, in the quantum
Hall effect [26–28] and in the Haldane model [7], the in-
teger topological Chern number produces one chiral edge
mode. In our case, we study the edge states of this model
using the KWANT code [29] (see Fig. 6), and show that
the one-half Chern number phase hosts chiral edge states
which are evenly split between the two layers (see Fig. 7).

There is another direct evidence of Cj = 1/2. Recently,
it was proposed that the depletion rate of carriers excited
by circularly polarized light serves as a measure of the
Chern number [30, 31]. Specifically, it was shown that
in the presence of circularly polarized light with electric
field magnitude E,

C ⇠
1

2
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0
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Here H0 is the Hamiltonian in the absence of light, l is
the lowest band and u runs over all upper bands. With
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FIG. 7. Top right: Spectra computed for the same ribbon
geometry as Fig. 6, but with M1 = M2 =

p
3/3t1 and r =

1.2t1 (in the C̃j = 1/2 phase). Top left: Left chiral mode
at kx = �2.5 showing computed probability density on each
layer. Bottom right: Right chiral mode at kx = �2.3 showing
computed probability density on each layer. White arrows
indicate the current direction.

these expressions we verify that the one-half topological
number can be revealed in the wave-vector space through
circular dichroism of light; one Dirac point reveals the
same topological response as in the Haldane model and
the other Dirac point, forming the entangled region, re-
veals a zero topological charge such that when averaging
on both light polarizations, i.e. on the two Dirac points,
we detect C = 1/2. The interpretation of this phase
needs to be further studied in relation with the classifi-
cation table[11].

Finally, it is important to mention a distinction be-
tween the spin-1/2 model and the lattice model, when
we move away from the critical point M1 = M2. In the
lattice model, we find that the layer magnetization num-
ber C̃

j varies smoothly across the transition, in contrast
to the sharp change in C

j that occurred in the spin model.
The smoothing of this transition may be due to the ad-
ditional states available at half-filling where one layer is
empty. These states reduce the magnitude of the magne-
tization near the K 0 point. In fact, such smoothing would
also be seen in any time-dependent protocol to measure
the qubit Chern number C

j . This too is due to the pres-
ence of additional states that affect the spin dynamics in
the non-adiabatic regime. In the next section we return
to the two-qubit model to study these effects.

V. PROTOCOL IN TIME

One experimental protocol for measuring C
j in a two-

qubit system is to perform a linear sweep in time, ✓ = vt,
t 2 [0,⇡/v] for some velocity v, of the magnetic field along
the meridian � = 0 [5], measuring h�

j

z
i at the endpoints
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Figure 1: a) Spin model: topological phase diagram for the Chern number of each spin in the

(M2, r̃) plane. Here we have set M1 = H/3. The gold line at M2 = M1 indicates the symmetric

phase C
1 = C

2 = 1
2 . The insets illustrate (adiabatically deformed) spheres corresponding to the

parameter space spanned by the effective field for spin 1 (blue) and spin 2 (orange) in each phase.

The topological charge at the origin is indicated by the red dot. Along the gold line the effective-

field manifold (which is identical for each spin) is in a coherent superposition of containing and

not containing the monopole yielding a Chern number of 1/2 for each spin. b) Lattice model:

topological phase diagram in the (M2, r) plane for the total Chern number at half-filling, defined

with the two lowest occupied bands. The gold line at M2 = M1 indicates the symmetric phase for

which the gap is closed. The parameters t1 and |dz| = 3
p
3t2 in the Haldane model are shown in
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FIG. 5. a) Two stacked Haldane layers with |dz| =
p
3t1,

r =
p
3t1/3 (which is in the range r

�
c < r < r

+
c ) for the case

of symmetric Semenoff masses M1 = M2 = 3
p
3/4. a) Band

structure. b) Magnetization �
j
z ⌘ hnj

kB � n
j
kAi in one layer

over the primitive cell of the reciprocal lattice. c) Entangle-
ment entropy in the same region.

For the case of asymmetric Semenoff masses M1 6= M2,
the gap closes and reopens at r

�
c

. Upon computing the
Berry curvature numerically [24], we show in Fig. 6 a),
the phase diagram for the total Chern number C at half
filling, in agreement with previous established results
[21]. A topological transition takes place where the Chern
number of the second band changes from 1 to 0. When
the gap closes and reopens at K this number goes to �1.
The Chern number of the first band remains 1 through-
out.

The similarity between Fig. 1 and Fig. 6 a) suggests
that there indeed exists a faithful mapping between the
lattice model and the qubit model, which has been shown
to be certainly valid close to the transition between the
phases C = 2 and C = 1 (starting from the C = 1) [21].
Now, we study the (gold) line M1 = M2 where the sys-
tem shows a Z2 symmetry, corresponding to exchanging
the layers, which is at the origin of the fractional Chern
number.

This situation describes a new special class of materi-
als, where time-reversal and inversion symmetry are bro-

ken by the flux and mass terms, while a Z2 symmetry is
preserved. The result is a nodal ring semimetal where the
second and third bands cross as shown in Fig. 5 a). The
time-reversal invariant version of this case is discussed
in Ref. [25]. The eigenstates (82) at the poles take the
simple form

 1 =
1
p
2
(0,�1, 0, 1),  2 =

1
p
2
(0, 1, 0, 1),

 3 =
1
p
2
(�1, 0, 1, 0),  4 =

1
p
2
(1, 0, 1, 0). (89)

Defining,
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1

2
(c†

A1c
†
B1 � c

†
A1c

†
B2 � c

†
A2c

†
B1 + c

†
A2c

†
B2)|0i, (90)

we see that at r = r
+
c

, there is a transition in the ground
state at K from c

†
B1c

†
B2|0i to | gi. Meanwhile at K

0,
there is a transition at r = r

�
c

from c
†
A1c

†
A2|0i to | gi.

Below, r�
c

, the Semenoff masses favor the state c†
A1c

†
A2|0i.

Thus, by computing the expectation value of the mag-
netization (78) at the K and K

0 points in the layer basis,
we obtain the lattice version of Cj (Eq. (17))

C̃
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1

2
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j
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� n

j
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� n

j

K0B + n
j

K0Ai (91)
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><

>:
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�
c

1/2 r
�
c
< r < r

+
c

0 r > r
+
c
,

(92)

where j = 1, 2 refers to the layer basis. The magneti-
zation for a single layer is shown over the unit cell of
the reciprocal lattice in Fig. 5 b). Generically, we may
represent the ground state at half-filling in terms of the
occupancy of each layer (comprising two sub-lattices with
a given ket |iji):

| i =
X

i+j+k+l=2

cijkl|iji1|kli2, (93)

from which we get the reduced density matrix ⇢1 by trac-
ing out one layer:

⇢1 = diag(|c0011|
2
, |c1100|

2
, ⇢

red
1 ), (94)

where the 2 ⇥ 2 block ⇢
red
1 describes the space of states

where each layer is half-filled:

⇢
red
1 =

 
|c0110|

2 + |c0101|
2

c
⇤
0110c1010 + c

⇤
0101c1001

c0110c
⇤
1010 + c0101c

⇤
1001 |c1010|

2 + |c1001|
2

!
.

(95)
From this the entanglement entropy,

S1 = �⇢1 ln ⇢1, (96)

is computed numerically and shown for the case of sym-
metric masses in Fig. 5 c). For r < r

�
c

, the entangle-
ment entropy is identically zero. Above r

�
c

, the wave-
function becomes uniformly maximally entangled in the
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Figure 1: a) Spin model: topological phase diagram for the Chern number of each spin in the

(M2, r̃) plane. Here we have set M1 = H/3. The gold line at M2 = M1 indicates the symmetric

phase C
1 = C

2 = 1
2 . The insets illustrate (adiabatically deformed) spheres corresponding to the

parameter space spanned by the effective field for spin 1 (blue) and spin 2 (orange) in each phase.

The topological charge at the origin is indicated by the red dot. Along the gold line the effective-

field manifold (which is identical for each spin) is in a coherent superposition of containing and

not containing the monopole yielding a Chern number of 1/2 for each spin. b) Lattice model:

topological phase diagram in the (M2, r) plane for the total Chern number at half-filling, defined

with the two lowest occupied bands. The gold line at M2 = M1 indicates the symmetric phase for

which the gap is closed. The parameters t1 and |dz| = 3
p
3t2 in the Haldane model are shown in

the Supplementary Information. 22
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Conclusions

• There is a gauge invariant topological partial Chern number for 
each spin in interacting models with a radial magnetic field.

• This is rational-valued for models that yield entanglement at one 
pole.

• Spin models are topologically dual to fermion models on a 
hexagonal lattice, observable via: sublattice magnetization, 
entanglement entropy, circler dichroism, edge states.



QMC questions

• Does the nodal ring semimetal survive 
interactions?
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We study the two-dimensional Kane-Mele-Hubbard model at half filling by means of quantum Monte Carlo
simulations. We present a refined phase boundary for the quantum spin liquid. The topological insulator at
finite Hubbard interaction strength is adiabatically connected to the groundstate of the Kane-Mele model. In the
presence of spin-orbit coupling, magnetic order at large Hubbard U is restricted to the transverse direction. The
transition from the topological band insulator to the antiferromagnetic Mott insulator is in the universality class
of the three-dimensional XY model. The numerical data suggest that the spin liquid to topological insulator and
spin liquid to Mott insulator transitions are both continuous.
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I. INTRODUCTION

Topological insulators have attracted significant attention in
recent years,1 especially since their experimental realization.2

Whereas the existence of the topological state and many
of its consequences can be understood in terms of exactly
solvable, noninteracting models, the interplay of a topological
band structure and electronic correlations has become a
very active field of research. The corresponding interacting
models do not have general exact solutions, which has made
computational methods one of the most important tools. A
possible experimental route to the strongly correlated regime
is based on optical lattices.3

The Z2 topological band insulator (TBI), or quantum
spin-Hall insulator, closely related to the integer quantum
Hall effect,1 can be realized in the Kane-Mele (KM) model.4,5

The latter describes electrons (or Dirac fermions) on the two-
dimensional (2D) honeycomb lattice, with nearest-neighbor
hopping and spin-orbit coupling. Originally motivated by
graphene,5 the spin-orbit coupling turned out to be much
too small in this material for topological effects to be
observable. However, the KM model and its extension, the
Kane-Mele-Hubbard (KMH) model turn out to be a very
useful theoretical framework. In particular, the honeycomb
lattice geometry provides a direct connection to the recently
discovered quantum spin liquid (QSL) phase of the Hubbard
model on the same lattice.6 For the latter, the Dirac spectrum
with vanishing density of states at the Fermi level leads
to a Mott transition at a finite critical Hubbard U , and
the QSL phase lies between a semimetal and a magnetic
insulator.6 Finally, the symmetries of the KMH model permit
the application of powerful quantum Monte Carlo (QMC)
methods without a sign problem,7,8 so that exact results can be
obtained.

The phase diagram of the KMH model has been derived
from QMC simulations,7,8 and numerical results for the extent
of the QSL were presented in Ref. 7. At any nonzero spin-orbit
coupling, the semimetal is replaced by the Z2 TBI. In contrast,
the gapped QSL is found to be stable up to a finite critical
value of the spin-orbit interaction. Finally, the magnetic
transition of the Hubbard model, between the QSL and an

antiferromagnetic Mott insulator (AFMI), is supplemented
with a similar transition between the TBI and the AFMI in a
potentially different universality class. On a qualitative level,
certain aspects of the phase diagram were obtained for example
in mean-field theory,9 as well as with cluster methods10,11 and
variational QMC.12

The understanding of the KMH model is not complete.
Many of the open questions are related to the perhaps most in-
triguing aspect of the model, namely the QSL phase. The recent
results from approximate cluster methods for parameters in the
QSL region of the exact phase diagram inaccurately suggest a
rather complete understanding of this exotic phase. However,
strictly speaking, any cluster method breaks translational
symmetry, so that a true QSL phase is excluded from the outset.
In this light, conclusions such as the absence of edge states, or
the closing of the single-particle gap across the transition to the
TBI are not surprising, as the QSL phase is replaced in these
studies by a simple band insulator (a valence bond crystal).
The large correlation lengths (small gaps) observed in the QSL
phase in the Hubbard model6 highlight the necessity of careful
interpretation of the results obtained by cluster approximations
in the context of the QSL. Interesting connections between
TBIs and QSLs are discussed in Ref. 13.

The purpose of this paper is threefold. First, we present
a much more detailed account of the QMC calculations
underlying the phase diagram shown in Ref. 7. Second, we
extend the number of points in parameter space and the
observables calculated, in order to provide additional insight.
We also present a refined phase boundary for the QSL phase.
Third, we use the QMC method to investigate the quantum
phase transitions, especially in the light of recent theoretical
predictions.14,15 We show that the TBI–AFMI transition is in
the expected 3D XY universality class, and provide evidence
for the continuous nature of the QSL–TBI and the QSL–AFMI
quantum phase transitions. In contrast to earlier work,7 we
only consider bulk properties. We also provide an overview
of recent work on correlation effects in topological insulators
with a focus on the KMH model.

The paper is organized as follows. In Sec. II we briefly
review the model. Details about the QMC method are
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D. Measurements

For a given auxiliary-field configuration, we have to solve
a free-electron Hamiltonian with external fields that vary in
time and space. Consequently, Wick’s theorem holds, and it is
sufficient to compute the single-particle Green functions

Gσ (i, j ,τ,τ ′) = −⟨#0|T ci,σ (τ )c†j ,σ (τ ′)|#0⟩ (14)

to calculate arbitrary correlation functions. For the calculation
of Gσ we have followed Ref. 25. The single-particle gap $sp
at the Dirac point and the (staggered) spin gap $s at q = 0 are
extracted from fits to the corresponding Green functions.6

E. Projection parameter and Trotter discretization

The projective algorithm involves two numerical parame-
ters, namely the projection parameter θ and the Trotter time
step $τ . Both parameters were chosen such that their influence
on the results is smaller than the statistical errors. Explicitly,
we used $τ t = 0.05 or 0.1, and θ t = 40–60.

IV. RESULTS

In order to better orient the discussion, we first present the
phase diagram of the KMH model in Sec. IV A together with
a review of recent work, before elaborating on the various
quantum phase transitions.

A. Phase diagram

Figure 1 shows the groundstate phase diagram of the KMH
model, as obtained from QMC simulations. In addition to the
three phases of the Hubbard model on the honeycomb lattice,
the spin-orbit coupling introduces a Z2 TBI. The gapless SM
phase exists only at λ = 0. Whereas the TBI and the QSL
phase are fully gapped (finite single-particle gap $sp and spin
gap $s), the magnetic phase has $sp > 0 but $s = 0. Here
all gaps refer to the bulk and are not to be confused with the
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FIG. 1. (Color online) Ground-state phase diagram of the Kane-
Mele-Hubbard model as obtained from QMC simulations. The four
phases are a Z2 topological band insulator (TBI) with nonzero single-
particle (spin) gap $sp > 0 ($s > 0), a semimetal (SM, $sp = $s =
0) existing at λ = 0, a quantum spin liquid (QSL, $sp > 0, $s > 0),
and an antiferromagnetic Mott insulator (AFMI, $sp > 0, $s = 0).
Magnetic order in the z direction exists in the AFMI at λ = 0 but can
be excluded for λ/t ! 0.002 and all values of U/t shown. Lines are
quadratic fits to the QMC data points.

metallic, gapless edge states of the TBI phase of the KMH
model.

To the best of our knowledge, the QSL phase is character-
ized by the absence of any local order parameter, which would
reflect a broken-symmetry state. It can hence be regarded as a
genuine Mott insulating state, which should be stable with
respect to small perturbations such as spin-orbit coupling.
In the case of an odd number of electrons per unit cell,
the generalization of the Lieb-Schultz-Mattis theorem to two
dimensions26 suggests the presence of topological order in the
most general sense. Since the half-filled honeycomb lattice
has two electrons per unit cell, this topological ordering still
has to be numerically demonstrated or refuted. The underlying
SU (2) × SU (2)/Z2 symmetry of the Hubbard model on the
honeycomb lattice has led to the prediction of a Z2 × Z2
QSL with mutual spin-charge statistics.27 Sublattice pairing
states have been put forward by various authors to account
for the QSL phase.28,29 A canonical consequence of the above
topologically ordered phases is that, assuming a continuous
phase transition, the magnetically ordered phase would not be
a simple Néel state, thus leading to conjectures that can be
tested numerically.28,29 Finally, in the presence of spin-orbit
coupling, the possibility of the emergence of a topological Mott
insulating phase, in which the spinons carry the topological
character of the phase, remains.30,31 For the KMH model,
recent theoretical suggestions include a Z2 QSL15 and a chiral
QSL.20

The boundary of the magnetic phase is obtained from the
onset of long-range antiferromagnetic order in the xy plane.
Longitudinal order, present at λ = 0, can be excluded in Fig. 1
for all U/t and for λ/t ! 0.002, so that the xyz AFMI phase
is confined to a very small (possibly infinitesimal) interval
starting at λ = 0. The SM–TBI transition is evinced by the
simultaneous opening of a single-particle and a spin gap, which
as a function of λ closely follow the U = 0 results. The QSL–
TBI transition for intermediate Hubbard U and small λ turns
out to be the most difficult and perhaps most interesting case,
with the critical values extracted from a cusp (consistent with
a closing) of the single-particle gap $sp and the spin gap $s.
A more detailed discussion is given below.

Our numerical results suggest that the TBI phase at finite
U is adiabatically connected to the TBI state of the KM
model (U = 0). Similarly, the QSL phase is stable over a
finite range of λ, in accordance with theoretical predictions.15

Except for the smaller range of spin-orbit couplings compared
to Ref. 7, which is chosen here to highlight the structure
of the phase diagram around the QSL, we have obtained a
number of additional points for the phase boundary of the QSL.
The refined QSL phase boundary reveals a direct magnetic
transition between the QSL and the AFMI phase at finite λ. Our
numerical data suggest the existence of a multicritical point
where the QSL, TBI, and AFMI phases meet. The estimated
location of this point is (λc,Uc) ≈ (0.035t,4.2t).

Let us compare the phase diagram in Fig. 1 to other
work. The magnetic phase boundary was calculated using
mean-field theory.9 In that work, a transition from the TBI
to an AFMI phase is observed, with the critical U increasing
with increasing λ and comparable to the band width. However,
the numerical values differ by up to a factor of two. The phase
diagram from unbiased QMC simulations was presented by
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The spontaneous generation of charge-density-wave order in a Dirac fermion system via the natural
mechanism of electron-phonon coupling is studied in the framework of the Holstein model on the
honeycomb lattice. Using two independent and unbiased quantum Monte Carlo methods, the phase
diagram as a function of temperature and coupling strength is determined. It features a quantum critical
point as well as a line of thermal critical points. Finite-size scaling appears consistent with fermionic Gross-
Neveu-Ising universality for the quantum phase transition and bosonic Ising universality for the thermal
phase transition. The critical temperature has a maximum at intermediate couplings. Our findings motivate
experimental efforts to identify or engineer Dirac systems with sufficiently strong and tunable electron-
phonon coupling.
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The experimental advances in preparing single-layer
graphene [1] have put Dirac fermions at the focus of
condensed matter physics. While the single-electron prop-
erties are relatively well understood, correlation effects
remain a highly active area of research [2]. Because of the
two-dimensional (2D) nature of the problem, theoretical
models can be analyzed by powerful theoretical and
numerical methods, offering the prospect of a comprehen-
sive understanding. The field has recently received another
boost by the remarkable properties of other honeycomb
systems, in particular, quantum-spin-Hall physics in bis-
muthene [3] and unconventional superconductivity in
twisted bilayer graphene [4]. Finally, massive Dirac phases
such as charge-density-wave (CDW) insulators in transi-
tion-metal dichalcogenides [5] promise future applications
in optoelectronics.
Theoretical studies of massive Dirac fermions in 2þ 1

dimensions were pioneered by Semenoff [6], who consid-
ered a staggered fermion density or CDW, and Haldane [7],
who introduced a topological mass that produces an integer
quantum Hall state in the absence of a magnetic field. Such
problems become even richer if the masses arise from
spontaneous symmetry breaking at interaction-driven phase
transitions. Particularly remarkable aspects of Dirac sys-
tems are that (i) phase transitions occur at nonzero critical
values and (ii) the gapless fermionic excitations can
strongly modify the critical behavior, giving rise to fer-
mionic quantum critical points [8–17]. The interplay of

different order parameters provides a route to deconfined
quantum critical points [18] and emergent symmetries
[19,20] (see Ref. [21] for a review).
Numerous interactions have been explored numerically

in the framework of honeycomb lattice models. A suffi-
ciently strong on site Hubbard repulsion yields an anti-
ferromagnetic Mott insulator [22–24]. The same holds for a
more realistic 1=r Coulomb repulsion, although the non-
local part of the interaction—relevant for graphene where
screening is absent—enhances CDW fluctuations [25]. A
dominant nearest-neighbor repulsion favors a CDW state
[26–30] but is rather unrealistic; for spinful fermions,
quantum Monte Carlo (QMC) simulations are hampered
by the sign problem. Mean-field predictions of interaction-
generated topological states in extended Hubbard models
[26] inspired significant efforts to address fluctuation
effects. For spinless fermions, unbiased numerical methods
reveal the absence of topological phases but support CDW,
valence bond solid, and charge-modulated ground states
(see Ref. [31] for a review). Similar conclusions were
recently reached for the spinful problem [32,33]. Finally,
bond-bond interactions were found to produce valence
bond, antiferromagnetic, quantum-spin-Hall, and CDW
states [12,14,34].
Here, we consider electron-phonon coupling as the

mechanism for CDW order. QMC investigations along
these lines have so far been restricted by the challenges in
simulating electron-phonon models, as addressed by
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several recent methodological advances [35–38]. We car-
ried out large-scale QMC simulations of the fundamental
Holstein molecular-crystal model [39] to determine the
phase diagram as a function of coupling strength and
temperature. Moreover, we investigate the nature of the
observed quantum and thermal phase transitions.
Model.—Within the Holstein model, electrons coupled

to quantum phonons on the honeycomb lattice are
described by the Hamiltonian

Ĥ¼−t
X

hijiσ
ĉ†iσĉjσþ

X

i

!
1

2M
P̂2
i þ

κ
2
Q̂2

i

"
−g

X

i

Q̂iρ̂i: ð1Þ

The first term represents nearest-neighbor electronic hop-
ping, the second term describes independent Einstein
phonons at each lattice site, and the third term is a coupling
between fluctuations of the local electron number ρ̂i ¼
n̂i − 1 and the lattice displacement Q̂i. Here,
n̂i ¼

P
σĉ

†
iσĉiσ, the phonon frequency ω0 ¼

ffiffiffiffiffiffiffiffiffiffi
κ=M

p
, and

we introduce the dimensionless coupling λ ¼ g2=ðκWÞ
with the free bandwidth W ¼ 6t. We consider half-filling
and work in units where kB, ℏ, and the lattice constant are
equal to 1.
For λ ¼ 0, Eq. (1) gives the well-known semimetallic

band structure ϵðkÞ with linear excitations at the Dirac
points K, K0 [1]. An expansion around these points yields a
Dirac equation in terms of eight-component spinor fields
corresponding to N ¼ 2 (spin ↑;↓) Dirac fermions with
two flavors (valleys K, K0) and two pseudospin directions
(sublattices A, B) [1].
Methods.—We used the determinant QMC (DQMC)

[40] and the continuous-time interaction expansion (CT-
INT) QMC methods [41]. In the former, the electrons are
integrated out and the phonons are sampled using local and
block updates [42,43], as well as global moves based on an
effective bosonic model determined by a self-learning
scheme [36,44–47] (see Supplemental Material [48]). In
CT-INT, the phonons are integrated out and the resulting
electronic model with a retarded interaction is sampled
[59]. While CT-INTworks in continuous imaginary time, a
Trotter discretization Δτ ¼ 0.1 was used for DQMC
calculations. Although both methods are, in principle,
capable of simulating any parameters, CT-INT is most
efficient at weak coupling and less problematic with respect
to autocorrelations [35]. The DQMC method requires more
care regarding the sampling but—especially in combina-
tion with self-learning—can access stronger couplings and
larger system sizes. We used lattices with L × L unit cells
(2L2 sites) and L ¼ 3n (n ¼ 1; 2;…) whose reciprocal
lattice contains the Dirac points that determine the low-
energy physics.
Phase diagram.—The existence of CDW order at suffi-

ciently strong coupling can be inferred from two opposite
limits. For classical phonons (ω0 ¼ 0), we can make a

mean-field ansatz Q̂i ↦ ð−1ÞiQ̄, corresponding to a stag-
gered chemical potential or Semenoff mass that breaks
the sublattice and chiral symmetry [6]. The lattice displace-
ments are accompanied by a density imbalance δ ¼
jhn̂Ai − hn̂Bij (see inset of Fig. 1). The band structure
acquires a gap at the Fermi level, EðkÞ ¼ %

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2ðkÞ þ Δ2

p
.

Spontaneous mass generation is described by a gap
equation identical to that for the Mott transition of the
Hubbard model upon identifying Q̄ ¼ m=2 (Δ ¼ gQ̄),
λW ¼ U. The mean-field critical value is Uc¼ 2.23t or
λc¼ 0.37 [22], which may be compared to Uc≈ 3.8t or
λc≈ 0.63 from QMC simulations [23,24,60]. The nonzero
critical value reflects the stability of the semimetal at weak
coupling [8], the origin of which is the linearly vanishing
density of states, NðωÞ ∼ jωj [1].
In the opposite, antiadiabatic limit ω0 → ∞, integrating

out the phonons in the path-integral representation yields an
attractive Hubbard model with U ¼ λW [61]. By symmetry
[62], Uchas the same magnitude as for the Mott transition
of the repulsive Hubbard model, namely, 3.8t [23,24,60].
Under the Lieb-Mattis particle-hole transformation that
yields U → −U, the order parameters for CDW and super-
conductivity of the attractive Hubbard model combine into
a 3D vector that maps to the magnetization of the repulsive
model [62]. This implies (i) coexistence of CDWorder and
superconductivity for U > Uc [63] and (ii) long-range
order that spontaneously breaks the SO(3) symmetry only
at T ¼ 0 [64]. An expansion in 1=ω0 in the path-integral
representation of the Holstein model produces terms that
violate the SO(3) symmetry [61]. A mean-field decoupling
with an Ising CDW order parameter—reflecting the two
possible choices for the sign of the excess charge δ in
Fig. 1—gives again Uc¼ 2.23t or λc¼ 0.37. However,
while Ising-like CDW order in the square-lattice Holstein

FIG. 1. Phase diagram of the Holstein model (1) for ω0 ¼ 0.5t.
CDWorder with a staggered charge disproportionation % δ (inset)
exists beyond a quantum critical point at λ0c≈ 0.2375 and below a
critical temperature TcðλÞ. Critical values were obtained from the
crossings of the correlation ratio Rcfor different system sizes L as
a function of λ (filled symbols) or T (open symbols), respectively.
Data obtained from CT-INT (T ≤0.05t) and DQMC (T > 0.05t)
simulations, respectively. The line is a guide to the eye.
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The discovery of quantum spin-Hall (QSH) insulators has brought topology to the forefront of

condensed matter physics. While a QSH state from spin-orbit coupling can be fully under-

stood in terms of band theory, fascinating many-body effects are expected if it instead results

from spontaneous symmetry breaking. Here, we introduce a model of interacting Dirac

fermions where a QSH state is dynamically generated. Our tuning parameter further allows

us to destabilize the QSH state in favour of a superconducting state through proliferation of

charge-2e topological defects. This route to superconductivity put forward by Grover and

Senthil is an instance of a deconfined quantum critical point (DQCP). Our model offers the

possibility to study DQCPs without a second length scale associated with the reduced

symmetry between field theory and lattice realization and, by construction, is amenable to

large-scale fermion quantum Monte Carlo simulations.
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In the Kane-Mele model for the quantum spin-Hall (QSH)
insulator1, the original SU(2) spin symmetry is explicitly
broken by spin-orbit coupling. Here, we instead consider the

case where this symmetry is preserved by the Hamiltonian but
spontaneously broken by an interaction-generated QSH state2. At
the mean-field level, the latter is characterised by an SO(3) order
parameter constant in space and time and a band structure with a
non-trivial ℤ2 topological index1,3,4. Long-wavelength fluctua-
tions of this order parameter include in particular the Goldstone
modes that play a key role for phase transitions to, e.g., a Dirac
semimetal. Such a transition, illustrated in Fig. 1a, is described by
a Gross-Neveu-Yukawa field theory5,6 with QSH order encoded
in a mass in the underlying Dirac equation. Fluctuations can also
take the form of topological (‘skyrmion’) defects that correspond
to a non-trivial winding of the order parameter vector. Due to the
topological band structure of the QSH state, such skyrmions carry
electric charge 2e7: as illustrated in the Supplementary Discus-
sion, the insertion of a skyrmion in a system with open bound-
aries pumps a pair of charges from the valence to the conduction
band through the helical edge states. The condensation of sky-
rmion defects—which coincides with the destruction of the QSH
state—represents a route to generate a superconducting (SC)
state.

A direct QSH-SC phase transition (Fig. 1a) is an instance of a
deconfined quantum critical point (DQCP)8–10, the concept of
which relies on the topological defects of one phase carrying the
charge of the other phase. Defect condensation then provides a
mechanism for a continuous transition between two states with
different broken symmetries (SO(3) for QSH, U(1) for SC) that is
forbidden by Landau theory. Despite considerable numerical
efforts11,12, DQCPs remain a subject of intense debate. Important
questions include their very nature—weakly first order or con-
tinuous10—and the role of emergent symmetries13. One of the
difficulties lies in the fact that previous lattice realisations12,14,15
involve antiferromagnetic (AFM) and valence bond solid (VBS)
phases. For the widely studied square lattice, the VBS state breaks
the discrete ℤ4 rotation symmetry, whereas the field theory has a
U(1) symmetry. The latter is recovered on the lattice exactly at the
critical point, but in general the ℤ4 symmetry breaking term is
relevant. The additional length scale at which the ℤ4 symmetry
becomes visible obscures the numerical analysis. In the field
theory, this translates into the notion that quadruple skyrmion
addition (monopole) events of the AFM SO(3) order parameter
are irrelevant at criticality but proliferate slightly away from this
point to generate the VBS state8,16,17. Hence, the theory is subject
to a dangerously irrelevant operator. This complication is com-
pletely avoided in the model introduced here, where the DQCP
separates QSH and SC rather than AFM and VBS phases. QSH
and AFM order are both described by an SO(3) order parameter.
However, instead of the ℤ4 symmetry broken by the lattice VBS
state, the SC phase breaks the same global U(1) gauge symmetry
(charge conservation) on the lattice and in the continuum.

Therefore, the number of fat skyrmion defects7 with charge 2e is
conserved and monopoles are absent.

The exciting prospects of (i) SC order from topological defects
of a spontaneously generated QSH state and (ii) a monopole-free
realisation of a DQCP motivate the search for a suitable lattice
model amenable to quantum Monte Carlo simulations without a
sign problem. Such efforts are part of the recent surge of designer
Hamiltonians aimed at studying exotic phases and phase transi-
tions18–24. In this article we introduce and solve a model that
realises the quantum phase transition between QSH and SC
states.

Results
Model. Our starting point is a tight-binding model of Dirac
fermions in the form of electrons on the honeycomb lattice with
nearest-neighbour hopping (see Fig. 1b), as described by the
Hamiltonian

Ĥt ¼ "t
X

hi;ji
ðĉyi ĉj þ H:c:Þ: ð1Þ

The spinor ĉyi ¼ ð̂cyi;"; ĉ
y
i;#Þ, where ĉyi;σ creates an electron at

lattice site i with spin σ. Equation (1) yields the familiar graphene
band structure with gapless, linear excitations at the Dirac
points25. A suitable interaction that generates the above physics is

Ĥλ ¼ "λ
X

⬡

X

hhi;jii2⬡
iνijĉ

y
i σĉj þ H:c:

0

@

1

A
2

: ð2Þ

The first sum is over all the hexagons of a honeycomb lattice
with L × L units cells and periodic boundary conditions. The
second sum is over all pairs of next-nearest-neighbour sites of a
hexagon, see Fig. 1b. The quantity vij= ±1 is identical to the
Kane-Mele model1; for a path from site i to site j (connected by
Rij, see Fig. 1b) via site k, νij ¼ êz & ðRik ´RkjÞ=jêz & ðRik ´RkjÞj
with êz a unit vector perpendicular to the honeycomb plane.
Finally, σ= (σx, σy, σz) with the Pauli spin matrices σα.

The rationale for this choice of interaction is easy to
understand. Without the square, and taking just one of the three
Pauli matrices, Eq. (2) reduces to the Kane-Mele spin-orbit
coupling that explicitly breaks the SO(3) spin symmetry. In
contrast, the latter is preserved by Ĥλ but spontaneously broken
by long-range QSH order. For λ > 0, the model defined by Ĥ ¼
Ĥt þ Ĥλ can be simulated without a sign problem by auxiliary-
field quantum Monte Carlo methods26–28. In the following, we set
t= 1 and consider a half-filled band with one electron per site.

A mean-field decomposition of Eq. (2) with order parameter

field N⬡ ¼
P

hhi;jii2⬡ iνijĉ
y
i σ ĉj þ H:c:

D E
suggests a transition

from the Dirac semimetal to a QSH state at a critical value
λc1 > 0. However, it is highly non-trivial if the associated saddle
point is stable. In fact, s-wave pair hopping processes arise upon
expanding the square in Eq. (2) and can lead to super-
conductivity29. The exact phase diagram can be obtained by
quantum Monte Carlo simulations. Remarkably, as illustrated in
Fig. 1a, we find two distinct phase transitions. First, from the
semimetal to a QSH state at λc1, then from the QSH state to an s-
wave SC at λc2 > λc1.

Order parameters. The semimetal-QSH transition involves the
breaking of spin rotation symmetry and is expected to be in the O
(3) Gross-Neveu universality class for N = 8 Dirac fermions (two
sublattices, two Dirac points, σ= ↑, ↓). The local vector order
parameter takes the form of a spin-orbit coupling,

Ô
QSH
r;δ ¼ iĉyrσ ĉrþ δ þ H:c:; ð3Þ
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Fig. 1 Phase diagram and model. a Schematic ground-state phase diagram
with semimetallic, QSH, and SC phases. b Illustration of nearest- and next-
nearest neighbours and the vector Rij on a honeycomb lattice plaquette
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