ALF2020, 07.10.2020

Matrix product state simulations with general non-Abelian symmetries

Miklós Antal Werner

Budapest University of Technology and Economics

Collaborators:Paşcu Moca (BME & Oradea)Örs Legeza (Wigner RCP)Gergely Zaránd (BME)

[1] MAW, C. P. Moca, Ö. Legeza, and G. Zaránd, arXiv:2007.12418 (accepted to PRB)

Outline

- Short introduction to Matrix Product States
- MPS for general non-Abelian symmetries
- NA tensors and their algebraic properties
- Demonstration: NA-TEBD simulation of the post quench dynamics in the SU(3) Hubbard model

Introduction to Matrix Product States

Generic pure state:

$$|\Psi\rangle = \sum_{\sigma_1,...,\sigma_L} C_{\sigma_1\sigma_2...\sigma_L} |\sigma_1\rangle \otimes \cdots \otimes |\sigma_L\rangle \qquad \dim = d^L$$

Cut in two parts! left = [1, ..., l]right = [l + 1, ..., L]

Schmidt decomposition

$$|\Psi\rangle = \sum_{a_l} \lambda_{a_l}^{[l]} |a_l\rangle_{\text{left}} \otimes |a_l\rangle_{\text{right}}$$

Introduction to Matrix Product States

Moving the cut:

"Left unitarity":

$$a_{l+1}\rangle_{\text{left}} = \sum_{a_l,\sigma_{l+1}} \mathcal{A}_{a_l\sigma_{l+1}}^{[l]a_{l+1}} |a_l\rangle_{\text{left}} |\sigma_{l+1}\rangle$$

$$\sum_{\sigma,a} \mathcal{A}^{[l]\,a'}_{a\,\sigma} \left(\mathcal{A}^{[l]\,a''}_{a\,\sigma} \right)^* = \delta^{a'}_{a''}$$

Left canonical MPS ansatz:

$$|\Psi\rangle = \sum_{a_1,\dots,a_{L-1}} \sum_{\sigma_1,\dots,\sigma_L} \mathcal{A}_{\sigma_1}^{[1]a_1} \mathcal{A}_{a_1\sigma_2}^{[2]a_2} \dots \mathcal{A}_{a_{L-1}\sigma_L}^{[L]} |\sigma_1\rangle \otimes |\sigma_2\rangle \otimes \dots \otimes |\sigma_L\rangle$$

$$\mathcal{A}^{[1]}\mathcal{A}^{[2]}\mathcal{A}^{[3]} \qquad \mathcal{A}^{[L-1]}\mathcal{A}^{[L]}$$

$$\overbrace{a_1 \ \sigma_2 \ \sigma_3}^{[a_{L-1}]} \qquad \overbrace{a_{L-1} \ \sigma_L}^{[a_{L-1}]}$$

Approximation: truncation

$$\begin{split} |\Psi\rangle &\approx \sum_{a_l=1}^{M} \lambda_{a_l}^{[l]} |a_l\rangle_{\text{left}} \otimes |a_l\rangle_{\text{right}} \\ \\ \text{Truncation error:} \quad \sum_{a_l > M} \left|\lambda_{a_l}^{[l]}\right|^2 \end{split}$$

Real time dynamics: the TEBD algorithm

$$\begin{split} \hat{H} &= \sum_{i} \hat{h}_{i,i+1}^{(2)} = \hat{H}_{\text{even}} + \hat{H}_{\text{odd}} = \sum_{k} \hat{h}_{2k,2k+1}^{(2)} + \sum_{k} \hat{h}_{2k-1,2k}^{(2)} \\ e^{-i\hat{H}\Delta t} &\approx e^{-i\hat{H}_{\text{even}}\Delta t/2} e^{-i\hat{H}_{\text{odd}}\Delta t} e^{-i\hat{H}_{\text{even}}\Delta t/2} \end{split}$$

The Time Evolving Block Decimation algorithm:

Symmetries

Symmetry group: \mathcal{G} \longleftrightarrow Symmetry transformations: $\hat{U}(q)$ $g \in \mathcal{G}$

Symmetric model:

$$\widehat{H}, \mathcal{U}$$

$$\left[\hat{H}, \hat{\mathcal{U}}(g)\right] = 0, \quad \forall g \in \mathcal{G}$$

Locally generated symmetries:

 $\hat{\mathcal{U}}(g) = \hat{\mathcal{U}}_1(g) \otimes \hat{\mathcal{U}}_2(g) \otimes \cdots \otimes \hat{\mathcal{U}}_L(g)$ Single-site transformations

Examples

- U(1) charge
- U(1) spin-z
- SU(2) spin
- SU(3) x U(1)

Color charge

$$\begin{split} \hat{U}_{i}(\varphi) &= e^{i\varphi\hat{n}_{i}} \\ \hat{U}_{i}(\varphi) &= e^{i\varphi\hat{S}_{i}^{z}} \\ \hat{U}_{i}(\varphi,\vec{n}) &= e^{i\varphi\vec{n}\cdot\vec{S}_{i}} \\ \hat{U}_{i}(\varphi,\underline{\mathbf{U}}) &= e^{i\varphi\hat{n}_{i}} \sum_{a,b} \mathbf{U}_{ab} c_{a}^{\dagger} c_{b} \end{split}$$

Symmetries

Structure of the Hilbert space

$$\mathcal{H} = \operatorname{span} \left\{ |\Gamma; t, m \rangle \right\}$$

- Γ : Representation index
- t : Multiplet index (within sector Γ)
- •m : Internal index, $m = [1 \dots \dim_{\Gamma}]$

Hilbert space of a single site

 $\mathcal{H}_{i} = \operatorname{span}\left\{\left|\Gamma_{i}^{\operatorname{loc}};\tau_{i},\mu_{i}\right\rangle\right\}$

Schmidt-decomposition of singlet (trivial) states

$$|\Psi\rangle = \sum_{\Gamma_l} \sum_{t_l} \sum_{m_l=1}^{\dim_{\Gamma_l}} \lambda^{[l]}(\Gamma_l)_{t_l} |\Gamma_l; t_l, m_l\rangle_{\text{left}} \left|\overline{\Gamma}_l; t_l, \overline{m}_l\right\rangle_{\text{right}}$$

Non singlet states? $|\Psi_{\Gamma,M}
angle$

 States in the conjugate representation

$$\left|\tilde{\Psi}\right\rangle = \sum_{M} \frac{1}{\sqrt{\dim_{\Gamma}}} \left|\Psi_{\Gamma,M}\right\rangle \otimes \left|\overline{\Gamma},\overline{M}\right\rangle$$
 Auxiliary site

Non-Abelian MPS states

Moving the cut

Outer multiplicity: α

- Labels the multiplets of the same Γ' in the product $\Gamma\otimes\Gamma^{\mathrm{loc}}.$
- It is always trivial for Abelian groups and also for SU(2).

U(1) charge:
$$|n_1\rangle \otimes |n_2\rangle = |n_1 + n_2\rangle$$

SU(2) spin: $|S_1\rangle \otimes |S_2\rangle \Rightarrow |S\rangle$, $|S_1 - S_2| \le S \le S_1 + S_2$

Nontrivial multiplicities for SU(3) (and also SU(n>3))

Non-Abelian MPS states

$$\begin{split} |\Gamma';t',m'\rangle &= \sum_{\Gamma,\Gamma^{\rm loc}} \sum_{t,\tau} \sum_{\alpha} A(\Gamma,\Gamma^{\rm loc},\Gamma')_{t\,\tau\,\alpha}^{t'} \sum_{m,\mu} C(\Gamma,\Gamma^{\rm loc},\Gamma')_{m\,\mu}^{m'\,\alpha} |\Gamma;t,m\rangle \otimes \left|\Gamma^{\rm loc};\tau,\mu\right\rangle \\ |\Psi\rangle &= \sum_{\{\Gamma_l^{\rm loc}\}} \sum_{\{I_l\}} \sum_{\{t_l\}} \sum_{\{\tau_l\}} \sum_{\{\alpha_l\}} A^{[1]}(\{\Gamma\}^{[1]})_{\tau_1\,\alpha_1}^{t_1} A^{[2]}(\{\Gamma\}^{[2]})_{t_1\,\tau_2\,\alpha_2}^{t_2} \cdots A^{[L]}(\{\Gamma\}^{[L]})_{t_{L-1}\,\tau_L\,\alpha_L} \\ &\sum_{\{m_l\}} \sum_{\{\mu_l\}} C(\{\Gamma\}^{[1]})_{0\,\mu_1}^{m_1\,\alpha_1} C(\{\Gamma\}^{[2]})_{m_1\,\mu_2}^{m_2\,\alpha_2} \cdots C(\{\Gamma\}^{[L]})_{m_{L-1}\,\mu_L}^{\alpha_L} \\ &|\Gamma_1^{\rm loc};\tau_1,\mu_1\rangle \otimes \left|\Gamma_2^{\rm loc};\tau_2,\mu_2\rangle \otimes \cdots \otimes \left|\Gamma_L^{\rm loc};\tau_L,\mu_L\rangle\right., \end{split}$$

- The upper layer contains all the relevant information
- Bond-dimension reduction: multiplets vs. states
- Block structure (NA-tensors)

NA-tensors

 $|\Gamma';t',m'\rangle = \sum \sum \left[\sum A(\Gamma,\Gamma^{\rm loc},\Gamma')^{t'}_{t\,\tau\,\alpha} \sum C(\Gamma,\Gamma^{\rm loc},\Gamma')^{m'\alpha}_{m\,\mu} |\Gamma;t,m\rangle \otimes \left|\Gamma^{\rm loc};\tau,\mu\right\rangle \right]$ $\Gamma.\Gamma^{
m loc}$ t, au m,μ

- Block-sparse tensors, block key: $\{\Gamma\} = (\Gamma, \Gamma^{\mathrm{loc}}, \Gamma')$
- Matching of irrep labels
 - The A and C tensors on the same site share all three irrep labels
 - The two A tensors on adjacent sites share the "bond" irrep label Γ_i
 - The two C tensors on adjacent sites share the "bond" irrep label Γ_i

• Dependencies
$$dep(t_i) = \Gamma_i$$
 $dep(\tau_i) = \Gamma_i^{loc}$
 $dep(m_i) = \Gamma_i$ $dep(\mu_i) = \Gamma_i^{loc}$
 $dep(\alpha_i) = (\Gamma_{i-1}, \Gamma_i^{loc}, \Gamma_i)$

NA-tensors

Motivation to 3)

 $T(\{\Gamma\})_{i_1\dots i_n}^{j_1\dots j_m} \qquad \{\Gamma\} = (\Gamma_1\dots \Gamma_k)$

1) Incoming and outgoing legs can be contracted. Their dependencies must match.

2) The result tensor's blocks are labeled by all the irreps, but the matched irrep labels appear just once.

Additional rule:

3) If there is one or more representation indices in the result tensor that no remaining (uncontracted) legs depend on, then blocks must be summed over these representation indices.

 $(\Gamma_1, m_1; \Gamma_2, m_2 | \Gamma, M)_{\alpha} [(\Gamma'_1, m'_1; \Gamma'_2, m'_2 | \Gamma, M)_{\alpha}]^* = \delta^{(\Gamma'_1 m'_1 \Gamma'_2 m'_2)}_{(\Gamma_1 m_1 \Gamma_2 m_2)}$ M, α, Γ m_{2} m'_2

Non-Abelian TEBD

 $U_{\rm red}(\{\Gamma\})_{\tau_1'\alpha_1'}^{\tau_1\alpha_1} \frac{\tau_2\alpha_2}{\tau_2'\alpha_2'}$ $\{\Gamma\} = (\Gamma_{\rm left}, \Gamma_1^{\rm loc}, \Gamma_1^{\rm loc'}, \Gamma_{\rm center}, \Gamma_2^{\rm loc}, \Gamma_2^{\rm loc}, \Gamma_2^{\rm loc'}, \Gamma_{\rm right})$

Measurements:

 $|\Psi_0\rangle$

$$\langle n_i(t) \rangle = ?$$

 $\langle n_i(t) n_j(t) \rangle = ?$
 $S_{\rm vN} = ?$

Technical questions:

- How do these depend on the bond-dimension?
- How long can we simulate?

Data for U=0

Data for U=0

Data for U>0

 $\frac{t = 5.0}{t = 4.5}$

t = 4.0

t = 3.5

t = 3.0

t = 2.5

t = 2.0

t = 1.5

t = 1.0

t = 0.5

t = 0.0

16

14

= 0.5

12

10

x

8

Numerical efficiency test

- Matrix Product States for general non-Abelian symmetries
- NA tensors and their algebraic properties
 - General objects, do not dependent on a specific symmetry.
 - They have simple contraction rules.
 - Various MPS algorithms can be formulated with them.
- Demonstration: NA-TEBD simulation of the post quench dynamics in the SU(3) Hubbard model
- Test of efficiency: almost two orders of magnitude speedup compared to the best Abelian case

Acknowledgements

Gergely Zaránd BUTE

Örs Legeza MTA Wigner RCP

Cătălin Paşcu Moca Univ. Oradea & BUTE

Financial support:

- Hungarian Quantum Technology National Excellence Program (Project No.2017-1.2.1-NKP-2017- 00001)
- BME-Nanotechnology FIKP/TKP2020 grant (BME FIKP-NAT)
- Supported by the ÚNKP-20-4 New National Excellence Program of the Ministry for Innovation and Technology from the source of the National Research, Development and Innovation Fund.

Thank you very much for your kind attention!

